精英家教网 > 高中数学 > 题目详情
11.已知:一个二次函数的图象与x轴的交点为(-1,0),(3,0),与y轴的交点为(0,3).求这个二次函数的解析式.

分析 由题意设两根式,代点可求a值,可得解析式.

解答 解:∵二次函数的图象与x轴的交点为(-1,0),(3,0),
∴可设二次函数的解析式为两根式y=a(x+1)(x-3),
又图象与y轴的交点为(0,3),∴3=a(0+1)(0-3),
解得a=-1,故解析式为y=-(x+1)(x-3)=-x2+2x+3,

点评 本题考查二次函数解析式的求解,利用待定系数法并设为两根式是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.函数y=$|tan(-2x-\frac{π}{6})|$+3图象的对称轴方程为x=$\frac{kπ}{4}$-$\frac{π}{12}$,k∈Z,周期为π,单调递减区间为($\frac{kπ}{2}$-$\frac{π}{3}$,$\frac{kπ}{2}$-$\frac{π}{12}$],k∈Z,.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=lnx-2ax3(a>0),若|f(x)|≥$\frac{1}{2}$对于任意的x∈(0,1]恒成立,则实数a的取值范围为(  )
A.[$\frac{\sqrt{e}}{6}$,+∞)B.[$\frac{1}{6}$,$\frac{\sqrt{e}}{6}$]C.[$\frac{1}{6}$,+∞)D.[$\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.下列各等式能否成立?为什么?
(1)2cosx=3;
(2)sin2x=0.5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{x}(x≥0)}\\{x+1(x<0)}\end{array}\right.$,则不等式f(x2)<f(2-x)的解集为(-2,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.指出由正弦曲线y=sinx经过怎样的步骤可以得到正弦型曲线y=$\frac{1}{3}$sin(4x-$\frac{π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1,D(0,-$\frac{\sqrt{2}}{3}$),直线l过D,且与椭圆交于M,N两点,证明:以MN为直径的圆过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设函数f(x)=1+lgx,则f(10)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某车间为了规定工时定额,需要确定加工某零件所花费的时间,为此作了四次实验,得到的数据如下:
零件的个数x(个)2345
加工的时间y(小时)2.5344.5
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出y关于x的线性回归方程;
(3)试预测加工10个零件需要多少时间?(注:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}{b}$$\overline{x}$)

查看答案和解析>>

同步练习册答案