精英家教网 > 高中数学 > 题目详情
已知abc是三个非零向量,且两两不共线,顺次将它们的终点和始点相连接而成一三角形的充要条件为a+b+c=0.

证明:已知0≠0,b≠0,c≠0,且ab,bc,ca,

(1)必要性:作=a,=b,则由假设=c,

另一方面a+b=+=.

由于是一对相反向量,

∴有+=0,故有a+b+c=0.

(2)充分性:作=a,=b,则=a+b,又由条件a+b+c=0,

+c=0.等式两边同加,得++c=+0.

c=,故顺次将向量abc的终点和始点相连接成一三角形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列命题:
①若
a
2+
b
2=0,则
a
=
b
=
0

②已知
a
b
c
是三个非零向量,若
a
+
b
=
0
,则|
a
c
|=|
b
c
|,
③在△ABC中,a=5,b=8,c=7,则
BC
CA
=20;
a
b
是共线向量?
a
b
=|
a
||
b
|.
其中真命题的序号是
 
.(请把你认为是真命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

3、已知A,B,C是三个集合,那么“A=B”是“A∩C=B∩C”成立的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①若
a
2
+
b
2
=0
,则
a
=
b
=
0

②若A(x1,y1),B(x2,y2),则
1
2
AB
=(
x1+x2
2
y1+y2
2
)

③已知
a
b
c
是三个非零向量,若
a
+
b
=
0
;,则|
a
c
|=|
b
c
|

④已知λ1>0,λ2>0,
e1
e2
是一组基底,
a
1
e1
2
e2
,则
a
e1
不共线,
a
e2
也不共线;
a
b
共线?
a
b
=|
a
||
b
|

其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
b
c
是三个非零向量,则下列命题中,真命题的个数是(  )
(1)|
a
b
|=|
a
|•|
b
|?
a
b
; 
(2)
a
b
反向?
a
b
=-|
a
|•|
b
|

(3)
a
b
?|
a
+
b
|=|
a
-
b
|

(4)|
a
|=|
b
|?|
a
c
|=|
b
c
|

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c是三个连续的自然数,且成等差数列,a+1,b+2,c+5成等比数列,求a,b,c的值.

查看答案和解析>>

同步练习册答案