精英家教网 > 高中数学 > 题目详情
在△ABC中,三边AB=8,BC=7,AC=3,以点A为圆心,r=2为半径作一个圆,设PQ为圆A的任意一条直径,记T=,则T的最大值为   
【答案】分析:本题考查的知识点是平面向量的数量积运算,由AB=8,BC=7,AC=3,以点A为圆心,r=2为半径作一个圆,设PQ为圆A的任意一条直径,我们易得T=8+,又由,我们可得当同向时,T取最大值.
解答:解:T=
=
=
=
=8+
=8+

故T的最大值为22
故答案为:22
点评:如果两个非量平面向量平行(共线),则它们的方向相同或相反,此时他们的夹角为0或π.当它们同向时,夹角为0,此时向量的数量积,等于他们模的积,有最大值;当它们反向时,夹角为π,此时向量的数量积,等于他们模的积的相反数,有最小值.如果两个向量垂直,则它们的夹角为π2,此时向量的数量积,等于0.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,三边a、b、c与面积S的关系是S=
1
4
(a2+b2-c2),则角C应为(  )
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三边a、b、c所对的角分别为A、B、C,已知a=2
3
,b=2,△ABC的面积S=
3
,则C=
π
6
6
π
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三边a,c,b成等差,则sinA的范围是
[
3
2
,1
[
3
2
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三边a、b、c与面积S的关系式为S=
1
4
(a2+b2-c2),则角C=
π
4
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三边a,b,c成等差数列,B=30°,三角形ABC的面积为
1
2
,则b的值是(  )

查看答案和解析>>

同步练习册答案