精英家教网 > 高中数学 > 题目详情
设x,y∈(0,+∞),且xy-(x+y)=1,则x+y的取值范围是
[2+2
2
,+∞)
[2+2
2
,+∞)
分析:由题意可得 x+y+1=xy≤(
x+y
2
)
2
,即 (x+y)2-4(x+y)-4≥0,解此不等式求得x+y的取值范围.
解答:解:由x,y∈(0,+∞),且xy-(x+y)=1,可得 x+y+1=xy≤(
x+y
2
)
2

化简可得 (x+y)2-4(x+y)-4≥0,解得 x+y≤2-2
2
(舍去),或  x+y≥2+2
2

综上可得x+y的取值范围是 [2+2
2
,+∞)

故答案为 [2+2
2
,+∞)
点评:本题主要考查基本不等式的应用,一元二次不等式的解法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)设x<y<0,试比较(x2+y2)(x-y)与(x2-y2)•(x+y)的大小;
(2)已知a,b,c∈{正实数},且a2+b2=c2,当n∈N,n>2时,比较cn与an+bn的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

x,y>0,x+y=2,
1
x
+
9
y
≥k
恒成立,则k的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y是0,1,2,3,4,5中任意两个不同的数,那么复数x+yi恰好是纯虚数的概率为(  )
A、
1
6
B、
1
3
C、
1
5
D、
1
30

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知2<x<3,-2<y<-1,求x+y、x-y、xy的取值范围;
(2)设x<y<0,试比较(x2+y2)(x-y)与(x2-y2)(x+y)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足定义域在(0,+∞)上的函数,对于任意的x,y∈(0,+∞),都有f(xy)=f(x)+f(y),当且仅当x>1时,f(x)<0成立,
(1)设x,y∈(0,+∞),求证f(
yx
)=f(y)-f(x)

(2)设x1,x2∈(0,+∞),若f(x1)<f(x2),试比较x1与x2的大小;
(3)解关于x的不等式f(x2-2x+1)>0.

查看答案和解析>>

同步练习册答案