精英家教网 > 高中数学 > 题目详情
(2012•崇明县二模)如图,已知四棱锥P-ABCD的底面ABCD为正方形,PA⊥平面ABCD,E、F分别是BC,PC的中点,AB=2,AP=2.
(1)求证:BD⊥平面PAC;
(2)求二面角E-AF-C的大小.
分析:(1)利用线面垂直的判定证明BD⊥平面PAC,证明AC⊥BD、PA⊥BD即可;
(2)以A为原点,建立直角坐标系,求出平面FAE法向量
n
=(1,-2,1)
BD
=(2,-2,0)
,利用向量的夹角公式,即可求二面角E-AF-C的大小.
解答:(1)证明:∵底面ABCD为正方形,∴AC⊥BD
∵PA⊥平面ABCD,∴PA⊥BD
∵PA∩AC=A
∴BD⊥平面PAC;
(2)解:以A为原点,如图所示建立直角坐标系,则A(0,0,0),E(2,1,0),F(1,1,1)
AE
=(2,1,0),
AF
=(1,1,1)

设平面FAE法向量为
n
=(x,y,z),则
2x+y=0
x+y+z=0
,∴可取
n
=(1,-2,1)

BD
=(2,-2,0)

∴cosθ=|
n
BD
|
n
||
BD
|
|=|
2+4
2
2
×
6
|=
3
2

所以θ=
π
6
,即二面角E-AF-C的大小为
π
6
点评:本题考查的知识点是直线与平面垂直的判定,二面角的求法,其中建立空间直角坐标系,将二面角问题转化为向量夹角问题是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•崇明县二模)如图所示的算法流程图中,若f(x)=2x+3,g(x)=x2,若输出h(a)=a2,则a的取值范围是
[3,+∞)∪(-∞,-1]
[3,+∞)∪(-∞,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•崇明县二模)若(
x2
2
-
1
3x
)
n
展开式的各项系数和为-
1
27
,则展开式中常数项等于
7
2
7
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•崇明县二模)在极坐标系中,已知点A(2,π),B(2,
3
),C是曲线p=2sinθ上任意一点,则△ABC的面积的最小值等于
3
-
1
2
3
-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•崇明县二模)某公司向市场投放三种新型产品,经调查发现第一种产品受欢迎的概率为
4
5
,第二、第三种产品受欢迎的概率分别为m,n,且不同种产品是否受欢迎相互独立.记ξ为公司向市场投放三种新型产品受欢迎的数量,其分布列为
ξ 0 1 2 3
P
2
45
a d
8
45
则m+n=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•崇明县二模)(理)若已知曲线C1方程为x2-
y2
8
=1(x≥0,y≥0)
,圆C2方程为(x-3)2+y2=1,斜率为k(k>0)直线l与圆C2相切,切点为A,直线l与曲线C1相交于点B,|AB|=
3
,则直线AB的斜率为(  )

查看答案和解析>>

同步练习册答案