精英家教网 > 高中数学 > 题目详情
(2012•道里区三模)在△ABC中,角A、B、C所对的边分别为a、b、c,且acosB-bcosA=
1
2
c
,当tan(A-B)取最大值时,角C的值为
π
2
π
2
分析:利用正弦定理及诱导公式化简已知的等式,整理后利用同角三角函数间的基本关系弦化切后得到tanA=3tanB,利用两角和与差的正切函数公式化简tan(A-B),将tanA=3tanB代入,利用基本不等式变形,求出tan(A-B)取得最大值时tanA与tanB的值,进而确定出A与B的度数,即可此时得到C的度数.
解答:解:利用正弦定理化简已知的等式得:sinAcosB-sinBcosA=
1
2
sinC=
1
2
sin(A+B)=
1
2
(sinAcosB+cosAsinB),
整理得:sinAcosB=3cosAsinB,
两边除以cosAcosB得:tanA=3tanB,
则tan(A-B)=
tanA-tanB
1+tanAtanB
=
2tanB
1+3tan2B
=
2
3tanB+
1
tanB

∵A、B是三角形内角,且tanA与tanB同号,
∴A、B都是锐角,即tanA>0,tanB>0,
∴3tanB+
1
tanB
≥2
3
,当且仅当3tanB=
1
tanB
,即tanB=
3
3
时取等号,
∴tanA=3tanB=
3

∴A=
π
3
,B=
π
6

则C=
π
2

故答案为:
π
2
点评:此题考查了两角和与差的正切函数公式,正弦定理,同角三角函数间的基本关系,诱导公式,以及基本不等式的运用,熟练掌握公式及定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•道里区三模)如图,四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.
(Ⅰ)求证:平面AEC⊥平面PDB;
(Ⅱ)当PD=
2
AB
,且直线AE与平面PBD成角为45°时,确定点E的位置,即求出
PE
EB
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•道里区三模)如图,设D是图中边长分别为1和2的矩形区域,E是D内位于函数y=
1
x
(x>0)图象下方的区域(阴影部分),从D内随机取一个点M,则点M取自E内的概率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•道里区三模)已知函数f(x)=
kx+1,x≤0
lnx,x>0
,则下列关于函数y=f[f(x)]+1的零点个数的判断正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•道里区三模)已知复数z1=1-
3
i
z2=2
3
-2i
,则
.
z1
.
z2
等于(  )

查看答案和解析>>

同步练习册答案