精英家教网 > 高中数学 > 题目详情
若f(x)=sin2-cosx,则f′(2)等于(  )
A、sin2+cos2B、cos2C、sin2D、sin2-cos2
分析:根据导数的公式先求函数的导数,然后代入求值即可.
解答:解:∵f(x)=sin2-cosx,
∴f'(x)=0+sinx=sinx,
∴f'(2)=sin2,
故选:C
点评:本题主要考查导数的计算,要求熟练掌握常见函数的导数公式,在本题中要注意sin2是常数,不是函数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知:
a
=(4sinx,cosx-sinx),
b
=(sin2
π
4
+
x
2
),cosx+sinx),函数f(x)=
a
b

(1)设ω>0且为常数,若y=f(ωx)在区间[-
π
2
3
]上是增函数,求ω的取值范围.
(2)若f(x)=cosx+1,求tan(2x+
π
6
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos(x+2π)+cos(
π
2
-x)
,x∈R.
(Ⅰ)求f(x)的最大值;
(Ⅱ)若f(α)=
3
4
,求sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=sin2ωx+
3
cosωx•cos(
π
2
-ωx)
(ω>0),且函数y=f(x)的图象相邻两条对称轴之间的距离为
π
2

(1)求ω的值及f(x)的单调递增区间;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,若a=1,b=
2
,f(A)=1,求角C.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖北)设函数f(x)=sin2ωx+2
3
sinωx•cosωx-cos2ωx+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(
1
2
,1).
(1)求函数f(x)的最小正周期;
(2)若y=f(x)的图象经过点(
π
4
,0)
,求函数f(x)的值域.

查看答案和解析>>

同步练习册答案