解:由

?

?A={x|-4<x<2}.
由x
2+4x-5≥0?(x+5)(x-1)≥0?B={x|x≤-5或x≥1}.
(1)A∪B={x|-4<x<2}∪{x|x≤-5或x≥1}={x|x≤-5或x>-4}.
所以?
U(A∪B)={x|-5<x≤-4}.
(2)A∩B={x|1≤x<2},而由|x-m|<2?C={x|m-2<x<m+2},
由(A∩B)⊆C?

?0≤m<3.
分析:解分式不等式求出集合A,二次不等式求出集合B,
(1)先求A∪B,然后求?
U(A∪B);
(2)利用(1)直接求出A∩B,利用(A∩B)⊆C得到

,求出m的范围即可.
点评:本题是基础题,考查不等式的解法,交集与并集比较的关系,集合关系中的参数取值问题,考查计算能力,常考题型.