分析 由三角函数化简可得$y=sin\frac{x}{2}+\sqrt{3}cos\frac{x}{2}=2sin(\frac{x}{2}+\frac{π}{3})$,
(1)当$\frac{x}{2}+\frac{π}{3}=2kπ+\frac{π}{2}$,即$x=4kπ+\frac{π}{3},k∈Z$时,y取得最大值,可得此时x的集合;
(2)由周期公式可得最小正周期,解$-\frac{π}{2}+2kπ≤\frac{x}{2}+\frac{π}{3}≤\frac{π}{2}+2kπ,k∈Z$可得单调递增区间.
解答 解:由三角函数化简可得$y=sin\frac{x}{2}+\sqrt{3}cos\frac{x}{2}=2sin(\frac{x}{2}+\frac{π}{3})$,
(1)当$\frac{x}{2}+\frac{π}{3}=2kπ+\frac{π}{2}$,即$x=4kπ+\frac{π}{3},k∈Z$时,y取得最大值2,
此时x的集合为$\left\{{x|x=4kπ+\frac{π}{3},k∈Z}\right\}$;
(2)由周期公式可得最小正周期$T=\frac{2π}{{\frac{1}{2}}}=4π$,
解$-\frac{π}{2}+2kπ≤\frac{x}{2}+\frac{π}{3}≤\frac{π}{2}+2kπ,k∈Z$可得$-\frac{5π}{3}+4kπ≤x≤\frac{π}{3}+4kπ,k∈Z$;
∴函数f(x)的单调增区间为:$[-\frac{5π}{3}+4kπ,\frac{π}{3}+4kπ],k∈Z$.
点评 本题考查三角函数恒等变换,涉及三角函数的周期性和最值,属基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{3}$ | B. | $\frac{π}{2}$ | C. | -$\frac{π}{6}$ | D. | -$\frac{π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{1}{8}$,0)∪(0,+∞) | B. | (-$\frac{1}{8}$,+∞) | C. | (-∞,0)∪(0,$\frac{1}{8}$) | D. | (0,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com