精英家教网 > 高中数学 > 题目详情
已知f(x)为R上的奇函数,且f(x+2)=f(x),若f(1+a)=1,则f(1-a)=
-1
-1
分析:先利用f(x+2)=f(x)得出函数的周期是2,然后利用函数是奇函数,可以得到f(1-a)的值.
解答:解:因为f(x+2)=f(x),所以函数的周期是2,
因为f(1+a)=1,所以f(1+a)=f(1+a-2)=f(a-1)=1,
又因为函数f(x)为R上的奇函数,所以f(1-a)=-f(a-1)=-1.
故答案为:-1.
点评:本题主要考查函数奇偶性和周期性的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)为R上的减函数,则满足f(
1
x
)>f(1)
的实数x的取值范围是(  )
A、(-∞,1)
B、(1,+∞)
C、(-∞,0)∪(0,1)
D、(-∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为R上的减函数,则满足f(
1x2
)>f(1)
的实数x的取值范围是
(-∞,-1)∪(1,+∞)
(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知 f(x)为R上的可导函数,且f(x)<f'(x)和f(x)>0对于x∈R恒成立,则有(  )
A、f(2)<e2-f(0),f(2010)>e2010-f(0)B、f(2)>e2-f(0),f(2010)>e2010-f(0)C、f(2)<e2-f(0),f(2010)<e2010-f(0)D、f(2)<e2-f(0),f(2010)<e2010-f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为R上的偶函数,且当x≥0时,f(x)=x2-2x,则
(1)求f(x)在R上的解析式;
(2)写出f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为R上的奇函数,且f(x+1)=-f(x),若存在实数a、b使得f(a+x)=f(b-x),则a、b应满足关系
a+b=1+2k(k∈N*
a+b=1+2k(k∈N*

查看答案和解析>>

同步练习册答案