精英家教网 > 高中数学 > 题目详情
有两个口袋,其中第一个口袋中有6个白球,4个红球;第二个口袋中有4个白球,6个红球.甲从第一个口袋中的10个球中任意取出1个球,乙从第二个口袋中的10个球中任意取出1个球.

(Ⅰ)求两人都取到白球的概率;

(Ⅱ)求两人中至少有一人取到白球的概率.

解:记“甲从第一个口袋中的10个球中任意取出1个球是白球”为事件A,“乙从第二个口袋中的10个球中任意取出1个球是白球”为事件B.于是

P(A)=

P(B)=

由于甲或乙是否取到白球对对方是否取到白球没有影响,因此A与B是相互独立事件.

(Ⅰ)两人都取到白球的概率为P(A·B)=P(A)·P(B)=.

(Ⅱ)甲、乙两人均未取到白球的概率为P()=P()·P()=.

则两人中至少有一人取到白球的概率为P=1-P()=1-.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2006•东城区二模)有两个口袋,其中第一个口袋中有6个白球,4个红球;第二个口袋中有4个白球,6个红球.甲从第一个口袋中的10个球中任意取出1个球,乙从第二个口袋中的10个球中任意取出1个球.
(1)求两人都取到白球的概率;
(2)求两个中至少有一个取到的白球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

口袋内有n(n>3)个大小相同的球,其中有3个红球和n-3个白球,已知从口袋中随机取出一个球是红球的概率是p,且6p∈N.若有放回地从口袋中连续地取四次球(每次只取一个球),在四次取球中恰好取到两次红球的概率大于
827

(Ⅰ)求p和n;
(Ⅱ)不放回地从口袋中取球(每次只取一个球),取到白球时即停止取球,记ξ为第一次取到白球时的取球次数,求ξ的分布列和期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

口袋里装有4个大小相同的小球,其中两个标有数字1,两个标有数字2.
(Ⅰ) 第一次从口袋里任意取一球,放回口袋里后第二次再任意取一球,记第一次与第二次取到小球上的数字之和为ξ.当ξ为何值时,其发生的概率最大?说明理由;
(Ⅱ) 第一次从口袋里任意取一球,不再放回口袋里,第二次再任意取一球,记第一次与第二次取到小球上的数字之和为η.求η大于2的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•道里区三模)口袋里装有7个大小相同的小球,其中三个标有数字1,两个标有数字2,一个标有数字3,一个标有数字4.
(Ⅰ) 第一次从口袋里任意取一球,放回口袋里后第二次再任意取一球,记第一次与第二次取到小球上的数字之和为ξ.当ξ为何值时,其发生的概率最大?说明理由;
(Ⅱ) 第一次从口袋里任意取一球,不再放回口袋里,第二次再任意取一球,记第一次与第二次取到小球上的数字之和为η.求η的分布列和数学期望.

查看答案和解析>>

同步练习册答案