分析 (1)由直方图在得到分数在[50,60)的频率,求出全班人数;
(2)由茎叶图求出分数在[80,90)之间的人数,进一步求出频率分布直方图中[80,90]间的矩形的高
解答 解:(1)分数在[50,60]的频率为0.008×10=0.08.
由茎叶图知,分数在[50,60]之间的频数为2,所以全班人数为$\frac{2}{0.08}$=25.
(2)分数在[80,90]之间的频数为25-2-7-10-2=4,
频率分布直方图中[80,90]间的矩形的高为$\frac{4}{25}$÷10=0.016.
点评 本题考查了茎叶图和频率分布直方图;关键是正确认识茎叶图和频率分布直方图,从中获取需要的信息.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | M1=M2=$\overline x$ | B. | M1=M2<$\overline x$ | C. | M1<M2<$\overline x$ | D. | M2<M1<$\overline x$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (3,2) | B. | ($\frac{3\sqrt{13}}{13}$,$\frac{2\sqrt{13}}{13}$) | ||
| C. | ($\frac{3\sqrt{13}}{13}$,$\frac{2\sqrt{13}}{13}$)或(-$\frac{3\sqrt{13}}{13}$,-$\frac{2\sqrt{13}}{13}$) | D. | 以上都不对 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{4}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\sqrt{3}$或$\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{2}$或$\frac{\sqrt{3}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | -$\frac{16}{3}$ | C. | $\frac{4}{3}$ | D. | $\frac{16}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com