精英家教网 > 高中数学 > 题目详情

一个四棱锥P-ABCD的正视图是边长为2的正方形及其一条对角线,侧视图和俯视图全全等的等腰直角三角形,直角边长为2,直观图如图.

       (1)求四棱锥P-ABCD的体积:

       (2)求直线PC和面PAB所成线面角的余弦值;

       (3)M为棱PB上的一点,当PM长为何值时,CM⊥PA?

(1)VP-ABCD=SABCD·PD=

       (2)以D为坐标原点,建立     设为平面PAB的法向量

       ,PC与所成角,有

,PC与PAB所成角为  

∴余弦值为

(3)由M在棱PB上,,得M(

即当|PM|=|PB|=

CM⊥PA

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正三棱锥P-ABC的四个顶点都在同一球面上,其中底面的三个顶点在该球的一个大圆上.若正三棱锥的高为1,则球的半径为
 
,P,A两点的球面距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

侧棱长为a的正三棱锥P-ABC的侧面都是直角三角形,且四个顶点都在一个球面上,则该球的表面积为(  )
A、
2
πa2
B、2πa2
C、
3
πa2
D、3πa2

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱锥P-ABC中,给出下列四个命题:
①如果PA⊥BC,PB⊥AC,那么点P在平面ABC内的射影是△ABC的垂心;
②如果点P到△ABC的三边所在直线的距离都相等,那么点P在平面ABC内的射影是△ABC的内心;
③如果棱PA和BC所成的角为60°,PA=BC=2,E、F分别是棱PB、AC的中点,那么EF=1;
④如果三棱锥P-ABC的各条棱长均为1,则该三棱锥在任意一个平面内的射影的面积都不大于
12

其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱锥P-ABC中,给出下列四个命题:
①如果PA⊥BC,PB⊥AC,那么点P在平面ABC内的射影是△ABC的垂心;
②如果点P到△ABC的三边所在直线的距离都相等,那么点P在平面ABC内的射影是△ABC的内心;
③如果棱PA和BC所成的角为60?,PA=BC=2,E、F分别是棱PB、AC的中点,那么EF=1;
④三棱锥P-ABC的各棱长均为1,则该三棱锥在任意一个平面内的射影的面积都不大于
1
2

⑤如果三棱锥P-ABC的四个顶点是半径为1的球的内接正四面体的顶点,则P与A两点间的球面距离为π-arccos
1
3

其中正确命题的序号是
①④⑤
①④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知如图在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,PA=AC=BC=1,若三棱锥P-ABC的四个顶点都在某一个球面上,则该球的表面积为(  )
A、3π
B、4π
C、
3
π
2
D、12π

查看答案和解析>>

同步练习册答案