精英家教网 > 高中数学 > 题目详情
在1万张有奖储蓄的奖券中,设有一等奖1个,二等奖5个,三等奖10个.从中购买一张奖券.
(1)求分别获得一等奖、二等奖、三等奖的概率;
(2)求购买一张奖券就中奖的概率.
分析:(1)一等奖的基本事件只有一个,而总的基本事件共有1000件,故中一等奖的概率为P1=
1
10000
,同理求得中二等奖的概率P2和中三等奖的概率P3
(2)根据(1)可得中奖的概率为P=P1+P2+P3 ,运算求得结果.
解答:解:(1)一等奖的基本事件只有一个,而总的基本事件共有1000件,故中一等奖的概率为P1=
1
10000

同理,中二等奖的概率为P2=
5
10000
=
1
2000
,中三等奖的概率为P3=
10
10000
=
1
1000

(2)中奖的概率为P=P1+P2+P3 =
1
10000
+
5
10000
+
10
10000
=
16
10000
=
1
625
点评:本题考查古典概型及其概率计算公式的应用,体现了分类讨论的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在10 000张有奖储蓄的奖券中,设有1个一等奖,5个二等奖,10个三等奖,从中依次买两张,求在第一张中一等奖的条件下,第二张中二等奖或三等奖的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在1万张有奖储蓄的奖券中,设有一等奖1个,二等奖5个,三等奖10个.从中购买一张奖券.
(1)求分别获得一等奖、二等奖、三等奖的概率;
(2)求购买一张奖券就中奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

在1万张有奖储蓄的奖券中,设有一等奖1个,二等奖5个,三等奖10个.从中购买一张奖券.

    ⑴求分别获得一等奖、二等奖、三等奖的概率;

⑵求购买一张奖券就中奖的概率.

查看答案和解析>>

科目:高中数学 来源:《第3章 概率》2013年单元测试卷A(解析版) 题型:解答题

在1万张有奖储蓄的奖券中,设有一等奖1个,二等奖5个,三等奖10个.从中购买一张奖券.
(1)求分别获得一等奖、二等奖、三等奖的概率;
(2)求购买一张奖券就中奖的概率.

查看答案和解析>>

同步练习册答案