已知椭圆
经过点
,对称轴为坐标轴,焦点
在
轴上,离心率
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)求
的角平分线所在直线
的方程;
(Ⅲ)在椭圆
上是否存在关于直线
对称的相异两点?
若存在,请找出;若不存在,说明理由.
![]()
(1)
(2)
(3)不存在满足题设条件的点B和C.
【解析】有关解析几何的问题,常常涉及曲线的方程,此时往往要注意利用有关曲线的定义来解决,同时还会涉及直线与有关曲线的交点问题,在处理过程中往往需要结合二次方程的根与系数的关系解决
(I)设椭圆E的方程为
,
![]()
将A(2,3)代入上式,得![]()
∴椭圆E的方程为![]()
(II)解法1:由(I)知
,所以直线AF1的方程为:
直线AF2的方程为:
由点A在椭圆E上的位置知,直线l的斜率为正数.设
上任一点,则
若
(因其斜率为负,舍去).
所以直线l的方程为:![]()
解法2:
![]()
(III)解法1:
假设存在这样的两个不同的点![]()
![]()
由于M在l上,故
①
又B,C在椭圆上,所以有
两式相减,得![]()
即
将该式写为
,并将直线BC的斜率
和线段BC的中点,表示代入该表达式中,得
②
①×2—②得
,即BC的中点为点A,而这是不可能的.
∴不存在满足题设条件的点B和C.
解法2:假设存在
,则![]()
得一元二次方程
则
是该方程的两个根,由韦达定理得
于是
∴B,C的中点坐标为
又线段BC的中点在直线![]()
即B,C的中点坐标为(2,3),与点A重合,矛盾.∴不存在满足题设条件的相异两点.
科目:高中数学 来源:2010-2011学年浙江省高三上学期期中考试数学文卷 题型:解答题
(本小题满分15分)已知椭圆
经过点(0,1),离心率![]()
(I)求椭圆C的方程;
(II)设直线
与椭圆C交于A,B两点,点A关于x轴的对称点为A’.试问:当m变化时直线
与x轴是否交于一个定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由。
![]()
查看答案和解析>>
科目:高中数学 来源:2010年高考试题分项版理科数学之专题十三导数 题型:解答题
(本小题满分13分)
已知椭圆
经过点
,对称轴为坐标轴,焦点
在
轴上,离心率
。[来源:ZXXK]
(Ⅰ)求椭圆
的方程;
(Ⅱ)求
的角平分线所在直线
的方程;
(Ⅲ)在椭圆
上是否存在关于直线
对称的相异两点?若存在,请找出;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源:2010年高考试题分项版理科数学之专题十排列、组合、二项式定理 题型:解答题
(本小题满分13分)
已知椭圆
经过点
,对称轴为坐标轴,焦点
在
轴上,离心率
。[来源:ZXXK]
(Ⅰ)求椭圆
的方程;
(Ⅱ)求
的角平分线所在直线
的方程;
(Ⅲ)在椭圆
上是否存在关于直线
对称的相异两点?若存在,请找出;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源:2010年高考试题分项版理科数学之专题一集合与简易逻辑 题型:解答题
(本小题满分13分)
已知椭圆
经过点
,对称轴为坐标轴,焦点
在
轴上,离心率
。[来源:ZXXK]
(Ⅰ)求椭圆
的方程;
(Ⅱ)求
的角平分线所在直线
的方程;
(Ⅲ)在椭圆
上是否存在关于直线
对称的相异两点?若存在,请找出;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源:2010年普通高等学校招生全国统一考试(安徽卷)数学试题(理科) 题型:解答题
(本小题满分13分)
已知椭圆
经过点
,对称轴为坐标轴,焦点
在
轴上,离心率
。[来源:ZXXK]
(Ⅰ)求椭圆
的方程;
(Ⅱ)求
的角平分线所在直线
的方程;
(Ⅲ)在椭圆
上是否存在关于直线
对称的相异两点?若存在,请找出;若不存在,说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com