【题目】在等腰梯形ABCD中,AB∥CD,且|AB|=2,|AD|=1,|CD|=2x其中x∈(0,1),以A,B为焦点且过点D的双曲线的离心率为e1 , 以C,D为焦点且过点A的椭圆的离心率为e2 , 若对任意x∈(0,1)不等式t<e1+e2恒成立,则t的最大值为( )
A.![]()
B.![]()
C.2
D.![]()
【答案】B
【解析】解:在等腰梯形ABCD中,BD2=AD2+AB2﹣2ADABcos∠DAB =1+4﹣2×1×2×(1﹣x)=1+4x,
由双曲线的定义可得a1=
,c1=1,e1=
,
由椭圆的定义可得a2=
,c2=x,e2=
,
则e1+e2=
+
=
+
,
令t=
∈(0,
﹣1),
则e1+e2=
(t+
)在(0,
﹣1)上单调递减,
所以e1+e2>
×(
﹣1+
)=
,
故选:B.![]()
根据余弦定理表示出BD,进而根据双曲线的定义可得到a1的值,再由AB=2c1 , e=
可表示出e1 , 同样的在椭圆中用c2和a2表示出e2 , 然后利用换元法即可求出e1+e2的取值范围,即得结论
科目:高中数学 来源: 题型:
【题目】下列函数:①f(x)=3|x| , ②f(x)=x3 , ③f(x)=ln
,④f(x)=x
,⑤f(x)=﹣x2+1中,既是偶函数,又是在区间(0,+∞)上单调递减函数为 . (写出符合要求的所有函数的序号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l与椭圆
交于两点A(x1 , y1),B(x2 , y2),椭圆上的点到下焦点距离的最大值、最小值分别为
,向量
=(ax1 , by1),
=(ax2 , by2),且
⊥
,O为坐标原点. (Ⅰ)求椭圆的方程;
(Ⅱ)判断△AOB的面积是否为定值,如果是,请给予证明;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设全集U={1,2,3,4,5},集合A={2,3,4},B={2,5},则B∪(UA)=( )
A.{5}
B.{1,2,5}
C.{1,2,3,4,5}
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经市场调查,东方百货超市的一种商品在过去的一个月内(以30天计算),销售价格f(t)与时间(天)的函数关系近似满足
,销售量g(t)与时间(天)的函数关系近似满足g(t)=
.
(1)试写出该商品的日销售金额W(t)关于时间t(1≤t≤30,t∈N)的函数表达式;
(2)求该商品的日销售金额W(t)的最大值与最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com