精英家教网 > 高中数学 > 题目详情
四棱锥S-ABCD的底面是矩形,锥顶点在底面的射影是矩形对角线的交点,且四棱锥及其三视图如下(AB平行于主视图投影平面)则四棱锥S-ABCD的侧面积(  )
精英家教网
A、8+4
13
B、20
C、12
2
+4
13
D、8+12
2
分析:四棱锥是底面是长为6,宽为4的矩形,根据锥顶点在底面的射影是矩形对角线的交点,得到四个侧面是等腰三角形,根据四棱锥的高是2,底面的长和宽是6,4和勾股定理可知侧面上的高,表示出面积.
解答:解:由题意知,这是一个四棱锥,
底面是长为6,宽为4的矩形,
∵锥顶点在底面的射影是矩形对角线的交点,
∴四个侧面是等腰三角形,
∵四棱锥的高是2,底面的长和宽是6,4
根据勾股定理可知侧面上的高有
22+32
=
13
22+22
=2
2

∴四个侧面的面积是
1
2
×6×2
2
+2×
1
2
×4×
13
=12
2
+4
13

故选C.
点评:本题考查由三视图求几何体的表面积,考查由三视图看出几何体中各个部分的长度,本题是一个基础题,题目的运算量比较小,在求侧面的斜高时要注意勾股定理的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正四棱锥S-ABCD,底面上的四个顶点A、B、C、D在球心为O的半球底面圆周上,顶点S在半球面上,则半球O的体积和正四棱锥S-ABCD的体积之比为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的
2
倍,P为侧棱SD上的点.
(Ⅰ)求证:AC⊥SD;
(Ⅱ)若SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE:EC的值;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

下面的一组图形为侧棱SA垂直于底面ABCD的某一四棱锥S-ABCD的侧面与底面,画出四棱锥S-ABCD的空间图形并研究
(I)求直线SC与平面SAD所成的角的大小;
(Ⅱ)求二面角B-SC-D的大小;
(Ⅲ)求此四棱锥S-ABCD外接球半径与内切球半径之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄浦区一模)已知四棱锥S-ABCD的底面ABCD是直角梯形,AB∥CD,BC⊥AB,侧面SAB为正三角形,AB=BC=4,CD=SD=2.如图所示.
(1)证明:SD⊥平面SAB;
(2)求四棱锥S-ABCD的体积VS-ABCD

查看答案和解析>>

科目:高中数学 来源: 题型:

如图已知四棱锥S-ABCD的底面是直角梯形,AB∥DC,∠DAB=90°,SA⊥底面ABCD,且SA=AD=DC=
12
AB=1,M
是SB的中点.
(1)证明:平面SAD⊥平面SCD;
(2)求AC与SB所成的角;
(3)求二面角M-AC-B的大小.

查看答案和解析>>

同步练习册答案