精英家教网 > 高中数学 > 题目详情
13.如图,在边长为1的正方体ABCD-A1B1C1D1中,O、E分别是A1C、BC的中点,P是线段A1O上一动点.
(1)求直线PA1与平面AB1P所成角的正弦的取值范围;
(2)当直线PA1与平面AB1P所成的角最大时,在平面A1CD上是否存在一点Q,使得点Q同时满足下列两个条件:①EQ⊥AP;②|D1Q|=$\frac{\sqrt{5}}{2}$,若存在,求出点Q的坐标;若不存在,请说明理由.

分析 (1)以A为原点,AB为x轴,AD为y轴,AA1为z轴,建立空间直角坐标系,设$\overrightarrow{{A}_{1}P}$=λ$\overrightarrow{{A}_{1}O}$,(0<λ≤1),利用向量法能求出直线PA1与平面AB1P所成角的正弦的取值范围.
(2)当直线PA1与平面AB1P所成的角最大时,P($\frac{1}{3},\frac{1}{3},\frac{2}{3}$),设Q(m,n,1-n),利用向量法推导出在平面A1CD上不存在一点Q,使得点Q同时满足下列两个条件:①EQ⊥AP;②|D1Q|=$\frac{\sqrt{5}}{2}$.

解答 解:(1)以A为原点,AB为x轴,AD为y轴,AA1为z轴,建立空间直角坐标系,
设$\overrightarrow{{A}_{1}P}$=λ$\overrightarrow{{A}_{1}O}$,(0<λ≤1),P(a,b,c),
A1(0,0,1),A(0,0,0),B1(1,0,1),C(1,1,0),O($\frac{1}{2},\frac{1}{2},\frac{1}{2}$),
∴(a,b,c-1)=($\frac{1}{2}λ,\frac{1}{2}λ,-\frac{1}{2}λ$),∴P($\frac{λ}{2},\frac{λ}{2}$,1-$\frac{λ}{2}$),
$\overrightarrow{P{A}_{1}}$=($\frac{λ}{2},\frac{λ}{2}$,-$\frac{λ}{2}$),$\overrightarrow{A{B}_{1}}$=(1,0,1),$\overrightarrow{AP}$=($\frac{λ}{2},\frac{λ}{2},1-\frac{λ}{2}$),
设平面AB1P的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{{AP}_{\;}}=\frac{λ}{2}x+\frac{λ}{2}y+(1-\frac{λ}{2})z=0}\\{\overrightarrow{n}•\overrightarrow{A{B}_{1}}=x+z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,$\frac{2}{λ}-2$,-1),
设直线PA1与平面AB1P所成角为θ,
则sinθ=|$\frac{\overrightarrow{n}•\overrightarrow{P{A}_{1}}}{|\overrightarrow{n}|•|\overrightarrow{P{A}_{1}}|}$|=|$\frac{\frac{λ}{2}+\frac{λ}{2}(\frac{2}{λ}-2)+\frac{λ}{2}}{\sqrt{\frac{3}{4}{λ}^{2}}•\sqrt{2+(\frac{2}{λ}-2)^{2}}}$|=$\frac{1}{\frac{\sqrt{3}}{2}\sqrt{6(λ-\frac{2}{3})^{2}+\frac{4}{3}}}$,
∵0<λ≤1,∴$λ=\frac{2}{3}$时,(sinθ)max=1.λ=0时,(sinθ)min=$\frac{1}{\frac{\sqrt{3}}{2}\sqrt{6×\frac{4}{9}+\frac{4}{3}}}$=$\frac{\sqrt{3}}{3}$,
∴直线PA1与平面AB1P所成角的正弦的取值范围是($\frac{\sqrt{3}}{3}$,1].
(2)当直线PA1与平面AB1P所成的角最大时,P($\frac{1}{3},\frac{1}{3},\frac{2}{3}$),
$\overrightarrow{AP}$=($\frac{1}{3},\frac{1}{3},\frac{2}{3}$),E(1,$\frac{1}{2}$,0),
∵设点Q在平面A1CD上,∴设Q(m,n,1-n),又D1(0,1,1),m,n∈(0,1),
∴$\overrightarrow{EQ}$=(m-1,n-$\frac{1}{2}$,1-n),$\overrightarrow{{D}_{1}Q}$=(m,n-1,-n),
∵EQ⊥AP,|D1Q|=$\frac{\sqrt{5}}{2}$,
∴$\left\{\begin{array}{l}{\frac{1}{3}(m-1)+\frac{1}{3}(n-\frac{1}{2})+\frac{2}{3}(1-n)=0}\\{\sqrt{{m}^{2}+(n-1)^{2}+(-n)^{2}}=\frac{\sqrt{5}}{2}}\end{array}\right.$,
解得$\left\{\begin{array}{l}{m=-\frac{1}{2}}\\{n=0}\end{array}\right.$或$\left\{\begin{array}{l}{m=-\frac{1}{6}}\\{n=\frac{1}{3}}\end{array}\right.$,都不成立,
∴在平面A1CD上不存在一点Q,使得点Q同时满足下列两个条件:①EQ⊥AP;②|D1Q|=$\frac{\sqrt{5}}{2}$.

点评 本题考查线面角的正弦值的取值范围的求法,考查满足条件的点是否存在的判断与求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$过双曲线$\frac{x^2}{25}-\frac{y^2}{4}$=1的右顶点且离心率为$\frac{3}{5}$.
(1)求C的方程;
(2)求过点(3,0)且斜率为$\frac{4}{5}$的直线被C所截线段的中点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列各组函数中,表示同一函数的是(  )
A.f(x)=|x|,g(x)=$\sqrt{{x}^{2}}$B.f(x)=2x,g(x)=2(x+1)
C.f(x)=$\sqrt{{x}^{2}}$,g(x)=($\sqrt{x}$)2D.f(x)=$\frac{{x}^{2}+1}{x+1}$,g(x)=x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.椭圆4x2+9y2=36的焦点坐标是(  )
A.(0,±3)B.(0,±$\sqrt{5}$)C.(±3,0)D.(±$\sqrt{5}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,AB=$\sqrt{3}$,AC=1,∠B=30°,△ABC的面积为$\frac{\sqrt{3}}{2}$,则∠C=60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设双曲线C:$\frac{{x}^{2}}{4}$-y2=λ(λ≠0),其中左准线方程为x=-$\frac{4\sqrt{10}}{5}$.
(1)求λ的值及左右两焦点F1,F2的坐标;
(2)设M是双曲线C上一点,且|OM|=$2\sqrt{2}$,F1,F2是椭圆E的两个顶点,并且椭圆E过点M,求椭圆E的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>D)的离心率为$\frac{\sqrt{3}}{3}$,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为$\frac{\sqrt{2}}{2}$.
(1)求a、b的值;
(2)C上是否存在点P,使得当l绕P转到某一位置时,有$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(x+1),(x>0)}\\{{2}^{-x}-1,(x≤0)}\end{array}\right.$,则f[f(-1)]=1;若f(x0)<1,则x0的取值范围是-1≤x0<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若抛物线y=x2log2a+2xloga2+8的图象在x轴上方,求实数a的取值范围.

查看答案和解析>>

同步练习册答案