精英家教网 > 高中数学 > 题目详情
设数列n2an的前n项和为Sn,且Sn=n(n+1)(n+2),n∈N*
(1)求数列an的通项公式;
(2)若数列bn满足bn=a1a2a3…an,n∈N*,求数列bn的通项公式及前n项和Tn
(3)在(2)的条件下,求证:
3
b1
+
32
2b2
+
33
3b3
+…+
3n
nbn
=
n
n+1
分析:(1)利用递推公式可先求n2an=sn-sn-1(n≥2),a1=s1,进一步可求an
(2)结合(1)可知an=
3(n+1)
n
,代入可求bn,利用“乘公比错位相减”求Tn
(3)结合(1)(2)可得,
3n
nbn
=
1
n(n+1)
=
1
n
-
1
n+1
,利用裂项求和
解答:解:(1)当n=1时,a1=6;
当n≥2时,Sn=n(n+1)(n+2)①
Sn-1=(n-1)n(n+1)②
由①-②得:n2an=3n(n+1),即an=
3(n+1)
n

综上得:an=
3(n+1)
n
.(4分)
(2)因为an=
3(n+1)
n

所以bn=a1a2a3an=
3×2
1
×
3×3
2
×
3×4
3
××
3(n+1)
n
=3n(n+1)

故bn=3n(n+1).(6分)
Tn=2•3+3•32+4•33+…+n•3n-1+(n+1)•3n.③
3Tn=2•32+3•33+4•34+…+n•3n+(n+1)•3n+1.④
③-④得:-2Tn=2•3+32+33+…+3n-(n+1)•3n+1=
1
2
3n+1
3
2
-(n+1)•3n+1

化简得:Tn=(
n
2
+
1
4
)•3n+1-
3
4
.(9分)
(3)由bn=3n(n+1),得
3n
bn
=
1
n+1
,等式两端同时乘以
1
n

3n
nbn
=
1
n(n+1)
.则有
3
b1
+
32
2b2
33
3b3
+…+
3n
nbn
=
1
1×2
+
1
2×3
+
1
3×4
+…
1
n(n+1)


1-
1
2
+
1
2
-
1
3
+…+ 
1
n
-
1
n+1

=1-
1
n+1

=
n
n+1
(12分)
点评:本题考查了数列的递推公式an=sn-sn-1,(n≥2),a1=s1由“和”与“项”的转化;叠乘求数列的通项公式;“乘公比错位相减”求数列的和、裂项求和等知识的综合运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,a1=1,an+1=2an+2n
(Ⅰ)设bn=
an
2n-1
,证明:数列{bn}是等差数列;
(Ⅱ)求数列{
n2
an
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n(n∈N*)项和为Sn,a1=1,a2=2,当n>2时,Sn=
n2
an+1.
(1)求an;(2)求数列{(Sn-34)an}(n∈N*)最小的项.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设数列n2an的前n项和为Sn,且Sn=n(n+1)(n+2),n∈N*
(1)求数列an的通项公式;
(2)若数列bn满足bn=a1a2a3…an,n∈N*,求数列bn的通项公式及前n项和Tn
(3)在(2)的条件下,求证:
3
b1
+
32
2b2
+
33
3b3
+…+
3n
nbn
=
n
n+1

查看答案和解析>>

科目:高中数学 来源:2009-2010学年北京市朝阳区高一(下)期末数学试卷(解析版) 题型:解答题

设数列n2an的前n项和为Sn,且Sn=n(n+1)(n+2),n∈N*
(1)求数列an的通项公式;
(2)若数列bn满足bn=a1a2a3…an,n∈N*,求数列bn的通项公式及前n项和Tn
(3)在(2)的条件下,求证:

查看答案和解析>>

同步练习册答案