精英家教网 > 高中数学 > 题目详情
某学生参加某高校的自主招生考试,须依次参加A、B、C、D、E五项考试,如果前四项中有两项不合格或第五项不合格,则该考生就被淘汰,考试即结束;考生未被淘汰时,一定继续参加后面的考试.已知每一项测试都是相互独立的,该生参加A、B、C、D四项考试不合格的概率均为
1
2
,参加第五项不合格的概率为
2
3

(1)求该生被录取的概率;
(2)记该生参加考试的项数为X,求X的分布列和期望.
(1)该生被录取,则A、B、C、D四项考试答对3道或4道,并且答对第五项.
所以该生被录取的概率为P=
1
3
[(
1
2
4+
1
3
C
 34
1
2
3
1
2
]=
5
48

(2)该生参加考试的项数X的所有取值为:2,3,4,5.
P(X=2)=
1
2
×
1
2
=
1
4
;P(X=3)=C
 12
1
2
1
2
1
2
=
1
4
;P(X=4)=C
 13
1
2
•(
1
2
2
1
2
=
3
16

P(X=5)=1-
1
4
-
1
4
-
3
16
=
5
16

该生参加考试的项数ξ的分布列为:
 X 2 3 4  3
 P  
1
4
 
1
4
 
3
16
 
5
16
EX=2×
1
4
+3×
1
4
+4×
3
16
+5×
5
16
=
57
16
练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年江西新余市高三上学期期末质量检测理科数学试卷(解析版) 题型:解答题

某市四所中学报名参加某高校今年自主招生的学生人数如下表所示:

中学

人数

为了了解参加考试的学生的学习状况,该高校采用分层抽样的方法从报名参加考试的四所中学的学生当中随机抽取50名参加问卷调查.

1)问四所中学各抽取多少名学生?

2)从参加问卷调查的名学生中随机抽取两名学生,求这两名学生自同一所中学的概率;

3在参加问卷调查的名学生中,从自两所中学的学生当中随机抽取两名学

生,用表示抽得中学的学生人数,求的分布列和期望.

 

查看答案和解析>>

同步练习册答案