精英家教网 > 高中数学 > 题目详情
(文)函数f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若
(1)证明:f(x)在[-1,1]上是增函数;
(2)解不等式
(3)若f(x)≤4t-3•2t+3对所有x∈[-1,1]恒成立,求实数t的取值范围.
【答案】分析:(1)利用函数的单调性的定义可知,要证明函数f(x)在[-1,1]上是增函数,只要证明任取-1≤x1<x2≤1时,f(x1)<f(x2),即可
(2)由不等式,结合(1)可得,解不等式可求x
(3)结合函数f(x)在[-1,1]是增函数,且f(1)=1,可得f(x)的最大值1,则由f(x)≤4t-3•2t+3对所有x∈[-1,1]恒成立,只要f(x)max≤4t-3•2t+3即可,从而可求
解答:证明:(1)任取-1≤x1<x2≤1.
∵f(x)为奇函数,


∴f(x1)<f(x2),
∴f(x)在[-1,1]上是增函数
(2)
(3)由(1)知f(x)在[-1,1]是增函数,且f(1)=1,
∴x∈[-1,1]时,f(x)≤1.
∵f(x)≤4t-3•2t+3对所有x∈[-1,1]恒成立,
∴4t-3•2t+3≥1恒成立,
∴(2t2-3•2t+2≥0即2t≥2或2t≤1
∴t≥1或t≤0.
点评:本题主要考查了函数的单调性的定义的应用,及利用函数的单调性求解不等式,求解函数的最值,以及函数的恒成立与函数的最值的相互转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文)函数f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若m,n∈[-1,1],m+n≠0,
f(m)+f(n)
m+n
>0

(1)证明:f(x)在[-1,1]上是增函数;
(2)解不等式f(x+
1
2
)<f(
1
x-1
)

(3)若f(x)≤4t-3•2t+3对所有x∈[-1,1]恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(文)函数f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若m,n∈[-1,1],m+n≠0,
f(m)+f(n)
m+n
>0

(1)证明:f(x)在[-1,1]上是增函数;
(2)解不等式f(x+
1
2
)<f(
1
x-1
)

(3)若f(x)≤4t-3•2t+3对所有x∈[-1,1]恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013年高考数学复习卷D(五)(解析版) 题型:解答题

(文)函数f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若
(1)证明:f(x)在[-1,1]上是增函数;
(2)解不等式
(3)若f(x)≤4t-3•2t+3对所有x∈[-1,1]恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年四川省成都37中高考一轮复习数学专项训练:集合和简易逻辑(解析版) 题型:解答题

(文)函数f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若
(1)证明:f(x)在[-1,1]上是增函数;
(2)解不等式
(3)若f(x)≤4t-3•2t+3对所有x∈[-1,1]恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案