精英家教网 > 高中数学 > 题目详情
在△ABC中,A=60°,b=1,△ABC面积为
3
,则
a+b+c
sinB+sinB+sinC
的值为(  )
A.
8
3
81
B.
2
3
39
C.
26
3
3
D.2
7
∵S△ABC=
1
2
bcsinA=
1
2
×1×c×
3
2
=
3

∴c=4
根据余弦定理有:a2=b2+c2-2bccosA=1+16-2×1×4×
1
2
=13
所以,a=
13

根据正弦定理
a
sinA
=
b
sinB
=
c
sinC
,则:
a+b+c
sinB+sinB+sinC
=
a
sinA
=
2
39
3

故选B
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,∠A=
π
6
,D是BC边上任意一点(D与B、C不重合),且丨
AB
|2=|
AD
|2+
BD
DC
,则∠B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a=6,b=4,C=30°,则△ABC的面积是(  )
A、12
B、6
C、12
3
D、8
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠A=
π
6
∠C=
π
2
|AC|=
3
,M是AB的中点,那么(
CA
-
CB
)•
CM
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠A=
π
6
,D是BC边上任意一点(D与B,C不重合)且|
AB
|2=|
AD
|2+
BD
DC
,则∠B
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a=
6
,b=2,c=
3
+1,求A、B、C及S△ABC

查看答案和解析>>

同步练习册答案