精英家教网 > 高中数学 > 题目详情
弦AB经过抛物线y2=2px(p>0)的焦点F,设A(x1,y1)、B(x2,y2),则下列叙述中,错误的选项是(  )
A.当AB与x垂直时,|AB|最小
B.|AB|=x1+x2+p
C.以弦AB为直径的圆与直线x=-
p
2
相离
D.y1y2=-p2
解;焦点F坐标(
p
2
,0),设直线L过F,则直线L方程为y=k(x-
p
2

联立y2=2px得k2x2-(pk2+2p)x+
p2k2
4
=0
由韦达定理得x1+x2=p+
2p
k2
  x1x2=
p2
4

∴y12y22=4p2x1x2=p4   y1y2=-p2 ∴D正确
|AB|=x1+x2+
p
2
=x1+x2+p=2p+
2p
k2
=2p(1+
1
k2
)∴B正确
因为k=tana,所以1+
1
k2
=1+
1
tan2α
=
1
sin2α

所以|AB|=
2p
sin2α

当a=90°时,即AB垂直于X轴时,AB取得最小值,最小值是|AB|=2p∴A正确
故选C
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

经过抛物线y2=4x的焦点F且倾斜角为45°的直线与抛物线交于A、B两点,则弦AB的中点M的坐标为
(3,2)
(3,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

弦AB经过抛物线y2=2px(p>0)的焦点F,设A(x1,y1)、B(x2,y2),则下列叙述中,错误的选项是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

弦AB经过抛物线y2=2px(p>0)的焦点F,设A(x1,y1)、B(x2,y2),则下列叙述中,错误的选项是


  1. A.
    当AB与x垂直时,|AB|最小
  2. B.
    |AB|=x1+x2+p
  3. C.
    以弦AB为直径的圆与直线数学公式相离
  4. D.
    y1y2=-p2

查看答案和解析>>

科目:高中数学 来源:2009-2010学年吉林省实验中学高二(上)期末数学试卷(文科)(解析版) 题型:选择题

弦AB经过抛物线y2=2px(p>0)的焦点F,设A(x1,y1)、B(x2,y2),则下列叙述中,错误的选项是( )
A.当AB与x垂直时,|AB|最小
B.|AB|=x1+x2+p
C.以弦AB为直径的圆与直线相离
D.y1y2=-p2

查看答案和解析>>

同步练习册答案