精英家教网 > 高中数学 > 题目详情
1.如图,已知四棱锥S-ABCD,SB⊥AD,侧面SAD是边长为4的等边三角形,底面ABCD为菱形,侧面SAD与底面ABCD所成的二面角为120°.
(1)求点S到平面ABCD的距离;
(2)若E为SC的中点,求二面角A-DE-C的正弦值.

分析 (1)解:作SO⊥平面ABCD,连接OB,OA,OD,OB与AD交于点F,连接SF.推导出OB⊥AD,SF⊥AD.从而∠SFB为侧面SAD与底面ABCD所成的二面角的平面角,由此能求出点S到平面ABCD的距离.
(2)以O为坐标原点,使y轴与BC平行,OB,OS所在直线分别为y轴、z轴建立空间直角坐标系,利用向量法能求出二面角A-DE-C的正弦值.

解答 解:(1)如图,作SO⊥平面ABCD,垂足为点O.
连接OB,OA,OD,OB与AD交于点F,连接SF.
∵SB⊥AD,
∴OB⊥AD.
∵SA=SD,
∴OA=OD.
∴点F为AD的中点,所以SF⊥AD.
由此知∠SFB为侧面SAD与底面ABCD所成的二面角的平面角,
∴∠SFB=120°,
∵侧面SAD是边长为4的等边三角形,
∴SF=$\sqrt{16-4}$=2$\sqrt{3}$,
∴SO=SF•sin60°=2$\sqrt{3}×\frac{\sqrt{3}}{2}$=3,
即点S到平面ABCD的距离为3.…(6分)
(2)如图以O为坐标原点,使y轴与BC平行,OB,OS所在直线分别为y轴、z轴建立空间直角坐标系,
由已知得:A($\sqrt{3}$,2,0),D($\sqrt{3},-2$,0),C(3$\sqrt{3}$,-4,0),E($\frac{3\sqrt{3}}{2}$,-2,$\frac{3}{2}$),
$\overrightarrow{AD}$=(0,-4,0),$\overrightarrow{DE}$=($\frac{\sqrt{3}}{2}$,0,$\frac{3}{2}$),$\overrightarrow{CE}$=(-$\frac{3\sqrt{3}}{2}$,2,$\frac{3}{2}$),
设平面ADE的法向量为$\overrightarrow m=(x,y,z)$,
则$\left\{\begin{array}{l}\overrightarrow m•\overrightarrow{AD}=-4y=0\\ \overrightarrow m•\overrightarrow{DE}=\frac{{\sqrt{3}}}{2}x+\frac{3}{2}z=0.\end{array}\right.$令x=$\sqrt{3}$,得$\overrightarrow{m}$=($\sqrt{3}$,0,-1).
设平面DEC的法向量为$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}\overrightarrow n•\overrightarrow{CE}=-\frac{{3\sqrt{3}}}{2}x+2y+\frac{3}{2}z=0\\ \overrightarrow n•\overrightarrow{DE}=\frac{{\sqrt{3}}}{2}x+\frac{3}{2}z=0\end{array}\right.$,令x=$\sqrt{3}$,得$\overrightarrow{n}$=($\sqrt{3}$,3,-1),
设二面角的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{4}{\sqrt{4}•\sqrt{13}}$=$\frac{2}{\sqrt{13}}$,
∴sinθ=$\sqrt{1-(\frac{2}{\sqrt{13}})^{2}}$=$\frac{3\sqrt{13}}{13}$,
∴二面角A-DE-C的正弦值为$\frac{3\sqrt{13}}{13}$.

点评 本题考查点到平面的距离的求法,考查二面角的正弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)={x^3}+a{x^2}+bx在x=-\frac{2}{3}与x=1$处都取得极值.
(1)求a,b的值;   
(2)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=aex-1+|x-a|-1有两个零点,则实数a的取值范围是(  )
A.[-1,1]B.[0,1]C.{-1}∪(0,1]D.{-1}∪[0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的体积为$\frac{32}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x2+ax+b(a,b∈R).
(1)当b<0时,若关于x的方程f(x)=0在区间[-1,1]内有2个不同的实数根,求2a+b的取值范围.
(2)当|f(x)|≤1在[-1,1]上恒成立,都有|x+a|≤M在[-1,1]上恒成立,求M的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.给出最小二乘法下的回归直线方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$系数公式:
$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-b$\overline{x}$
假设关于某设备的使用年限x(年)和所支出的维修费用y(万元),有如表的统计资料:
使用年限x (年)23456
维修费用y(万元)2.23.85.56.57.0
若由资料可知y对x呈线性相关关系,试求:
(1)线性回归直线方程;
(2)根据回归直线方程,估计使用年限为12年时,维修费用是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某市利用历史资料算得煤气年消耗量y(单位:万立方米)与使用煤气户数x(单位:万户)之间的回归直线方程为:$\widehaty$=$\frac{170}{23}$x-$\frac{31}{23}$.若市政府下一步再扩大2300煤气用户,试利用回归直线方程估计该市年煤气消耗量将增加0.35万立方米.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x3-$\sqrt{a}$x2+|ax|-5(a≥0).
(1)当a=4时,求函数f(x)的单调递减区间;
(2)若函数f(x)有且只有一个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在锐角△ABC中,内角A、B、C的所对的边分别为a、b、c,若2acosC+c=2b,则$\sqrt{3}$sin$\frac{B}{2}$cos$\frac{B}{2}$+cos2$\frac{B}{2}$的取值范围是($\frac{\sqrt{3}+1}{2}$,$\frac{3}{2}$].

查看答案和解析>>

同步练习册答案