分析 求出椭圆的焦点坐标,可得双曲线的焦点坐标,根据双曲线的一条渐近线方程为$x+\sqrt{3}y=0$,设双曲线的方程为x2-3y2=λ,即$\frac{{x}^{2}}{λ}-\frac{{y}^{2}}{\frac{λ}{3}}$=1,可得λ+$\frac{1}{3}$λ=48,即可求出双曲线的方程.
解答 解:椭圆x2+4y2=64的焦点坐标为(±4$\sqrt{3}$,0),
∴双曲线的焦点坐标为(±4$\sqrt{3}$,0),
∵双曲线的一条渐近线方程为$x+\sqrt{3}y=0$,
∴设双曲线的方程为x2-3y2=λ,
即$\frac{{x}^{2}}{λ}-\frac{{y}^{2}}{\frac{λ}{3}}$=1
∴λ+$\frac{1}{3}$λ=48,
∴λ=36,
∴双曲线的方程为$\frac{x^2}{36}-\frac{y^2}{12}=1$.
点评 本题考查双曲线的方程,考查椭圆、双曲线的几何性质,考查学生的计算能力,确定双曲线的焦点坐标是关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 价格 | 14 | 16 | 18 | 20 | 22 |
| 需求量 | 12 | 10 | 12 | 5 | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com