精英家教网 > 高中数学 > 题目详情

已知数列{an}的前三项分别为a1=5,a2=6,a3=8,且数列{an}的前n项和Sn满足Snm(S2nS2m)-(nm)2,其中mn为任意正整数.
(1)求数列{an}的通项公式及前n项和Sn
(2)求满足an+33=k2的所有正整数kn.

(1)Snn2+3n+1,n∈N*(2)n=10,k=131.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列{an}中,a1=2,an-an-1-2n=0(n≥2,n∈N*).
(1)写出a2,a3的值(只写结果),并求出数列{an}的通项公式;
(2)设bn+…+,若对任意的正整数n,当m∈[-1,1]时,不等式t2-2mt+>bn恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

各项均为正数的数列{an}中,设,且
(1)设,证明数列{bn}是等比数列;
(2)设,求集合

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}的前n项和Sn=2n2+2n,数列{bn}的前n项和Tn=2-bn.
(1)求数列{an}与{bn}的通项公式;
(2)设cn·bn,证明:当且仅当n≥3时,cn+1<cn..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知Sn是数列{an}的前n项和,且anSn-1+2(n≥2),a1=2.
(1)求数列{an}的通项公式.
(2)设bnTnbn+1bn+2+…+b2n,是否存在最大的正整数k,使得
对于任意的正整数n,有Tn恒成立?若存在,求出k的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和为
(1)求证:数列是等比数列;
(2)若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和满足,又.
(1)求实数k的值;
(2)问数列是等比数列吗?若是,给出证明;若不是,说明理由;
(3)求出数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设不等式组所表示的平面区域为Dn,记Dn内 的整点个数为an(n∈N*)(整点即横坐标和纵坐标均为整数的点).
(1) 求证:数列{an}的通项公式是an=3n(n∈N*).
(2) 记数列{an}的前n项和为Sn,且Tn.若对于一切的正整数n,总有Tn≤m,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列中,
(1)求的值;
(2)证明:数列是等比数列,并求的通项公式;
(3)求数列的前n项和.

查看答案和解析>>

同步练习册答案