精英家教网 > 高中数学 > 题目详情
设F1、F2分别是椭圆
x2
9
+y2=1
的左、右焦点.
(I)若M是该椭圆上的一个动点,求
mF1
MF2
的最大值和最小值;
(II)设过定点(0,2)的直线l与椭圆交于不同两点A、B,且∠AOB为钝角(其中O为坐标原点),求直线l的斜率k的取值范围.
分析:(I)由根据题意建立
MF1
MF2
关于x的函数,再求最值;
(II)由∠AOB为钝角,则有
OA
OB
<0
,即x1x2+y1y2<0,可整理为
27
1+9k2
+
-9k2+4
1+9k2
<0
再求得k2的范围.
解答:解:(I)由已知a=3,b=1,c=2
2
,则F1(-2
2
,0),F2(2
2
,0),设M(x,y)
(2分)
MF1
MF2
=(-2
2
-x)(2
2
-x)+y2=
8
9
x2-7?x∈[-3,3]
(5分)
所以当x=0时,
MF1
MF2
有最小值为-7;
x=±3时,
MF1
MF2
有最大值为1.(7分)
(II)设点A(x1,y2),B(x2,y2)直线AB方程:y=kx+2
y=kx+2
x2+9y2=9
?(1+9k2)x2+36kx+27=0
,※
x1+x2=-
36k
1+9k2
,?x1x2=
27
1+9k2
?y1y2=
-9k2+4
1+9k2
(9分)
因为∠AOB为钝角,
所以
OA
OB
<0
,即x1x2+y1y2<0?
27
1+9k2
+
-9k2+4
1+9k2
<0
(12分)
解得k2
31
9
?k>
31
3
31
3
,此时满足方程※有两个不等的实根(14分)
故直线l的斜率k的取值范围k>
31
3
或k<-
31
3
点评:本题主要考查椭圆方程及其性质的应用及直线与圆锥曲线的位置关系在构造平面图形解决有关问题中的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设F1,F2分别是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点,若在直线x=
a2
c
上存在点P,使线段PF1的中垂线过点F2,则椭圆的离心率的取值范围是
3
3
,1)
3
3
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2分别是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦点,若椭圆C上的一点A(1,
3
2
)到F1,F2的距离之和为4.
(1)求椭圆方程;
(2)若M,N是椭圆C上两个不同的点,线段MN的垂直平分线与x轴交于点P,求证:|
OP
|<
1
2

(3)若M,N是椭圆C上两个不同的点,Q是椭圆C上不同于M,N的任意一点,若直线QM,QN的斜率分别为KQM•KQN.问:“点M,N关于原点对称”是KQM•KQN=-
3
4
的什么条件?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•南汇区二模)设F1、F2分别是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点,其右焦点是直线y=x-1与x轴的交点,短轴的长是焦距的2倍.
(1)求椭圆的方程;
(2)若P是该椭圆上的一个动点,求
PF1
PF2
的最大值和最小值;
(3)是否存在过点A(5,0)的直线l与椭圆交于不同的两点C、D,使得|F2C|=|F2D|?若存在,求直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•安徽)设椭圆E:
x2
a2
+
y2
1-a2
=1
的焦点在x轴上
(1)若椭圆E的焦距为1,求椭圆E的方程;
(2)设F1,F2分别是椭圆E的左、右焦点,P为椭圆E上第一象限内的点,直线F2P交y轴于点Q,并且F1P⊥F1Q,证明:当a变化时,点P在某定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•南汇区二模)设F1、F2分别是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点,其右焦点是直线y=x-1与x轴的交点,短轴的长是焦距的2倍.
(1)求椭圆的方程;
(2)若P是该椭圆上的一个动点,求
PF1
PF2
的最大值和最小值;
(3)若P是该椭圆上的一个动点,点A(5,0),求线段AP中点M的轨迹方程.

查看答案和解析>>

同步练习册答案