【题目】设集合S={x|x>﹣2},T={x|x2+3x﹣4≤0},则(RS)∪T=( )
A.(﹣2,1]
B.(﹣∞,﹣4]
C.(﹣∞,1]
D.[1,+∞)
【答案】C
【解析】解:∵集合S={x|x>﹣2},
∴RS={x|x≤﹣2},
T={x|x2+3x﹣4≤0}={x|﹣4≤x≤1},
故(RS)∪T={x|x≤1}
故选C.
【考点精析】根据题目的已知条件,利用集合的全集运算和交、并、补集的混合运算的相关知识可以得到问题的答案,需要掌握一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集,通常记作U;求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法.
科目:高中数学 来源: 题型:
【题目】已知f(x)为奇函数,且在(0,+∞)上是递增的,若f(﹣3)=0,则xf(x)>0的解集是( )
A.{x|﹣3<x<0或x>3}
B.{ x|x<﹣3或0<x<3}
C.{ x|x<﹣3或x>3}
D.{ x|﹣3<x<0或0<x<3}
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在数列(an)中,an=2n﹣1,若一个7行12列的矩阵的第i行第j列的元素cij=aiaj+ai+aj(i=1,2,…,7;j=1,2,…,12),则该矩阵元素能取到的不同数值的个数为( )
A.18
B.28
C.48
D.63
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列各组对象中:
①高一个子高的学生;
②《高中数学》(必修)中的所有难题;
③所有偶数;
④平面上到定点O的距离等于5的点的全体;
⑤全体著名的数学家.
其中能构成集合的有( )
A.2组
B.3组
C.4组
D.5组
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l1和l2的夹角的平分线为y=x,如果l1的方程是x+2y+3=0,那么l2的方程为( )
A.x﹣2y+3=0
B.2x+y+3=0
C.2x﹣y+3=0
D.x+2y﹣3=0
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com