精英家教网 > 高中数学 > 题目详情
在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*
(Ⅰ)证明数列{an-n}是等比数列;
(Ⅱ)求数列{an}的前n项和Sn
(Ⅲ)证明不等式Sn+1≤4Sn,对任意n∈N*皆成立.
分析:(Ⅰ)整理题设an+1=4an-3n+1得an+1-(n+1)=4(an-n),进而可推断数列{an-n}是等比数列.
(Ⅱ)由(Ⅰ)可数列{an-n}的通项公式,进而可得{an}的通项公式根据等比和等差数列的求和公式,求得Sn
(Ⅲ)把(Ⅱ)中求得的Sn代入Sn+1-4Sn整理后根据-
1
2
(3n2+n-4)≤0
证明原式.
解答:解:(Ⅰ)证明:由题设an+1=4an-3n+1,得an+1-(n+1)=4(an-n),n∈N*
又a1-1=1,所以数列{an-n}是首项为1,且公比为4的等比数列.
(Ⅱ)由(Ⅰ)可知an-n=4n-1,于是数列{an}的通项公式为an=4n-1+n.
所以数列{an}的前n项和Sn=
4n-1
3
+
n(n+1)
2

(Ⅲ)证明:对任意的n∈N*Sn+1-4Sn=
4n+1-1
3
+
(n+1)(n+2)
2
-4(
4n-1
3
+
n(n+1)
2
)
=-
1
2
(3n2+n-4)≤0

所以不等式Sn+1≤4Sn,对任意n∈N*皆成立.
点评:本题以数列的递推关系式为载体,主要考查等比数列的概念、等比数列的通项公式及前n项和公式、不等式的证明等基础知识,考查运算能力和推理论证能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,
a
 
1
=1
an=
1
2
an-1+1
(n≥2),则数列{an}的通项公式为an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a 1=
1
3
,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{
an
n
}的前n项和为Tn,证明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a=
12
,前n项和Sn=n2an,求an+1

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=a,前n项和Sn构成公比为q的等比数列,________________.

(先在横线上填上一个结论,然后再解答)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省汕尾市陆丰市碣石中学高三(上)第四次月考数学试卷(理科)(解析版) 题型:解答题

在数列{an}中,a,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{}的前n项和为Tn,证明:

查看答案和解析>>

同步练习册答案