精英家教网 > 高中数学 > 题目详情
7.如图,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,∠BAC=90°,AB=AC=2,$A{A_1}=\sqrt{3}$.M,N分别为BC和AA1的中点,P为侧棱BB1上的动点.
(Ⅰ)求证:平面APM⊥平面BB1C1C;
(Ⅱ)若P为线段BB1的中点,求证:CN∥平面AMP;
(Ⅲ)试判断直线BC1与PA能否垂直.若能垂直,求出PB的值;若不能垂直,请说明理由.

分析 (Ⅰ)推导出AM⊥BC,BB1⊥AM,从而AM⊥平面BB1C1C,由此能证明平面AMP⊥平面BB1C1C.
(Ⅱ)连结BN,交AP于Q,连结MQ,NP.推导出四边形ANPB为平行四边形,从而CN∥MQ,由此能证明CN∥平面AMP.
(Ⅲ) 假设直线BC1与直线PA能够垂直,设PB=x,$x∈[0,\sqrt{3}]$.推导出$x=\frac{{4\sqrt{3}}}{3}∉[0,\sqrt{3}]$.从而得到直线BC1与直线PA不可能垂直.

解答 (本小题满分14分)
证明:(Ⅰ)由已知,M为BC中点,且AB=AC,
所以AM⊥BC.…(1分)
又因为BB1∥AA1,且AA1⊥底面ABC,
所以BB1⊥底面ABC.所以BB1⊥AM,…(3分)
所以AM⊥平面BB1C1C.
所以平面AMP⊥平面BB1C1C.…(5分)
(Ⅱ)连结BN,交AP于Q,连结MQ,NP.
因为N,P分别为AA1,BB1中点,所以AN∥BP,且AN=BP.
所以四边形ANPB为平行四边形,…(7分)
Q为BN中点,所以MQ为△CBN的中位线,
所以CN∥MQ.…(8分)
又CN?平面AMP,MQ?平面AMP,所以CN∥平面AMP.…(9分)
解:(Ⅲ) 假设直线BC1与直线PA能够垂直,
又因为AM⊥BC1
所以BC1⊥平面APM,所以BC1⊥PM.…(10分)
设PB=x,$x∈[0,\sqrt{3}]$.当BC1⊥PM时,∠BPM=∠B1C1B,
所以Rt△PBM∽Rt△B1C1B,所以$\frac{PB}{MB}=\frac{{{C_1}{B_1}}}{{B{B_1}}}$.…(12分)
因为$MB=\sqrt{2},{C_1}{B_1}=2\sqrt{2},B{B_1}=\sqrt{3}$,所以$\frac{x}{{\sqrt{2}}}=\frac{{2\sqrt{2}}}{{\sqrt{3}}}$,解得$x=\frac{{4\sqrt{3}}}{3}∉[0,\sqrt{3}]$.…(13分)
因此直线BC1与直线PA不可能垂直.…(14分)

点评 本题考查面面垂直的证明,考查线面平行的证明,考查线线是否垂直的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.定义在R上的偶函数f(x)满足,当x<0时,f(x)=$\frac{x}{x-1}$,则曲线y=f(x)在点(2,f(2))处的切线的斜率为$\frac{1}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.将边长为2的正方形ABCD沿对角线AC折起,使得BD=2,则三棱锥D-ABC的顶点D到底面ABC的距离为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线l过坐标原点O,圆C的方程为x2+y2-6y+4=0.
(Ⅰ)当直线l的斜率为$\sqrt{2}$时,求l与圆C相交所得的弦长;
(Ⅱ)设直线l与圆C交于两点A,B,且A为OB的中点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,E为正四棱锥P-ABCD侧棱PD上异于P,D的一点,给出下列结论:
①侧面PBC可以是正三角形;
②侧面PBC可以是直角三角形;
③侧面PAB上存在直线与CE平行;
④侧面PAB上存在直线与CE垂直.
其中,所有正确结论的序号是(  )
A.①②③B.①③④C.②④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=e2x+x2,则f'(0)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设复数z=i(1+i)(i为虚数单位),则复数z的实部为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.向量$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(-1,2),则$\overrightarrow{a}$-2$\overrightarrow{b}$的模等于$\sqrt{17}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在四棱锥P-ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=$\sqrt{3}$,BC=PA=1,E为PD的中点,点N在面PAC内,且NE⊥平面PAC,则点N到AB的距离为$\frac{\sqrt{10-4\sqrt{3}}}{4}$.

查看答案和解析>>

同步练习册答案