精英家教网 > 高中数学 > 题目详情
如图所示,在两个底面对应边的比是1∶2的三棱台ABC—A1B1C1中,BB1∥截面A1EDC1,求截面A1EDC1截棱台ABC—A1B1C1成两部分体积之比.

解析:设三棱台的上、下底面的面积分别为S1和S2,高为h.

,∴,∴S2=4S1.

.

∵BB1∥截面A1EDC1,BB1侧面BCC1B1,且侧面BCC1B1与截面交于C1D,∴BB1∥C1D.同理可证BB1∥A1E,∴C1D∥A1E.

∵两底面互相平行,∴A1C1∥DE.

∴截面A1EDC1是平行四边形,∴A1C1=DE.

同样可以证明B1C1=BD,A1B1=BE,

即△A1B1C1≌△BDE.

∴多面体BDE-B1C1A1是棱柱,且.

∵三棱柱BDE-B1C1A1的高等于三棱台ABC-A1B1C1的高,等于h.

.

∴三棱台被截面A1EDC1截得的另一部分的体积等于

.

∴截面A1EDC1截三棱台成两部分的体积之比为4∶3.

点评:本题以棱台为载体,讨论直线与平面、平面与平面的平行关系,其关键是证明多面体BDE-B1C1A1为棱柱.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,在三棱柱A1B1C1-ABC中,AA1⊥底面ABC,AC⊥BC.AC=BC=CC1=2.
(1)若点D、E、F分别为棱CC1、C1B1、CA的中点,求证:EF⊥平面A1BD;
(2)请根据下列要求设计切割和拼接方法:要求用平行于三棱柱A1B1C1-ABC的某一条侧棱的平面去截此三棱柱,切开后的两个几何体再拼接成一个长方体.简单地写出一种切割和拼接方法,
并写出拼接后的长方体的表面积(不必写出计算过程).

查看答案和解析>>

科目:高中数学 来源:2013-2014学年上海交大附中高三数学理总复习二空间向量与立体几何练习卷(解析版) 题型:解答题

如图所示,在多面体ABCD-A1B1C1D1中,上、下两个底面A1B1C1D1和ABCD互相平行,且都是正方形,DD1⊥底面ABCD,AB∥A1B1,AB=2A1B1=2DD1=2a.

(1)求异面直线AB1与DD1所成角的余弦值;

(2)已知F是AD的中点,求证:FB1⊥平面BCC1B1.

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在三棱柱A1B1C1-ABC中,AA1⊥底面ABC,AC⊥BC.AC=BC=CC1=2.
(1)若点D、E、F分别为棱CC1、C1B1、CA的中点,求证:EF⊥平面A1BD;
(2)请根据下列要求设计切割和拼接方法:要求用平行于三棱柱A1B1C1-ABC的某一条侧棱的平面去截此三棱柱,切开后的两个几何体再拼接成一个长方体.简单地写出一种切割和拼接方法,
并写出拼接后的长方体的表面积(不必写出计算过程).

查看答案和解析>>

科目:高中数学 来源: 题型:

解析:A错误.如图①所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥.B错误.如答图②③所示,若△ABC不是直角三角形,或是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥.C错误.若六棱锥的所有棱都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.D正确.

答案:D

查看答案和解析>>

科目:高中数学 来源:2008年广东省广州市高二数学竞赛试卷(解析版) 题型:解答题

如图所示,在三棱柱A1B1C1-ABC中,AA1⊥底面ABC,AC⊥BC.AC=BC=CC1=2.
(1)若点D、E、F分别为棱CC1、C1B1、CA的中点,求证:EF⊥平面A1BD;
(2)请根据下列要求设计切割和拼接方法:要求用平行于三棱柱A1B1C1-ABC的某一条侧棱的平面去截此三棱柱,切开后的两个几何体再拼接成一个长方体.简单地写出一种切割和拼接方法,
并写出拼接后的长方体的表面积(不必写出计算过程).

查看答案和解析>>

同步练习册答案