精英家教网 > 高中数学 > 题目详情
(2013•烟台一模)设{an}是正数组成的数列,a1=3.若点(an,an+12-2an+1)(n∈N*)在函数f(x)=
1
3
x3+x2
-2的导函数y=f′(x)图象上.
(1)求数列{an}的通项公式;
(2)设bn=
2
an+1an
,是否存在最小的正数M,使得对任意n∈N*都有b1+b2+…+bn<M成立?请说明理由.
分析:(1)求出f′(x),利用点在函数的图象上,求出递推关系,再求通项公式;
(2)利用an,求出bn,再用裂项相消法分析求解即可.
解答:解:(1)f′(x)=x2+2x,
由点(anan+12-2an+1)(n∈N*)在y=f′(x)图象上,
a
2
n+1
-2an+1=
a
2
n
+2an⇒(an+1-an)(an+1+an)=2(an+1+an
∵an>0,∴an+1-an=2,
∴数列{an}是首项为3,公差为2的等差数列,
∴an=2n+1.
(2)bn=
2
an+1•an
=
2
(2n+1)(2n+3)
=
1
2n+1
-
1
2n+3

∴b1+b2+…+bn=
1
3
-
1
5
+
1
5
-
1
7
+…+(
1
2n+1
-
1
2n+3
)=
1
3
-
1
2n+3
1
3

∴存在最小正数M=
1
3
,使得不等式成立.
点评:本题考查数列求和、数列的函数特性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•烟台一模)i是虚数单位,复数
2-i
1+i
在复平面上的对应点在(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•烟台一模)已知函数f(x)=
2x-1,(x≤0)
f(x-1)+1,(x>0)
,把函数g(x)=f(x)-x的零点按从小到大的顺序排列成一个数列,则该数列的通项公式为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•烟台一模)若函数f(x)=2sinωx(ω>0)在区间[-
π
3
π
4
]
上单调递增,则ω的最大值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•烟台一模)从参加某次高三数学摸底考试的同学中,选取60名同学将其成绩(百分制)(均为整数)分成6组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题.
(1)补全这个频率分布直方图,并估计本次考试的平均分;
(2)若从60名学生中随机抽取2人,抽到的学生成绩在[40,70)记0分,在[70,100]记1分,用X表示抽取结束后的总记分,求x的分布列和数学期望.

查看答案和解析>>

同步练习册答案