精英家教网 > 高中数学 > 题目详情
12.已知$\overrightarrow{a}$=(0,1),|$\overrightarrow{b}$|=4,且$\overrightarrow{a}$•$\overrightarrow{b}$=2,则向量$\overrightarrow{a}$与$\overrightarrow{b}$夹角的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

分析 由$\overrightarrow{a}$=(0,1)求出$|\overrightarrow{a}|$,结合已知再由数量积求夹角公式得答案.

解答 解:∵$\overrightarrow{a}$=(0,1),∴$|\overrightarrow{a}|=1$,
又|$\overrightarrow{b}$|=4,且$\overrightarrow{a}$•$\overrightarrow{b}$=2,
∴cos$<\overrightarrow{a},\overrightarrow{b}>$=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$=$\frac{2}{1×4}=\frac{1}{2}$.
∴向量$\overrightarrow{a}$与$\overrightarrow{b}$夹角为$\frac{π}{3}$.
故选:C.

点评 本题考查平面向量的数量积运算,考查向量模的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.如图,在四边形ABCD中,AD=4,AB=5,AD⊥CD,cos∠ADB=$\frac{9}{16}$,∠DCB=135°,则BC=$\frac{27\sqrt{2}}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在空间四边形OABC中,M为BC的中点,N为OM的中点,连接AC,则向量$\overrightarrow{AO}+\frac{1}{2}$($\overrightarrow{AB}+\overrightarrow{AC}$)化简后的结果为(  )
A.$\overrightarrow{ON}$B.$\overrightarrow{AM}$C.$\overrightarrow{AN}$D.2$\overrightarrow{AN}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在三棱锥O-ABC中,M,N分别是棱OA、CB的中点,点G在线段MN上,且MG=2GN,设$\overrightarrow{OA}$=a,$\overrightarrow{OB}$=b,$\overrightarrow{OC}$=c.
(1)试用a,b,c表示向量$\overrightarrow{MN}$和$\overrightarrow{OG}$;
(2)若OA=0B=OC=2,且∠AOB=∠BOC=60°,∠AOC=90°,求$\overrightarrow{MN}$•$\overrightarrow{OG}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若关于x的方程f(x)=x有实数解x0,则称x0是函数f(x)的“不动点”:已知函数f(x)=x2+ax+1在(0,+∞)上没有不动点,则实数a取值范围是(-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.正三棱台的上、下底面边长及高分别为1,2,2,则它的斜高是$\frac{7\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若sinx≥$\frac{1}{2}$,且tanx≤-1,则角x的集合是{x|2kπ+$\frac{π}{2}$<x≤2kπ+$\frac{3π}{4}$,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若两圆x2+y2=1与(x-a)2+(y+a)2=4(a>0)相切,则a=$±\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.利用秦九韶算法计算f(x)=x5+2x4+3x3+4x2+5x+6在x=5时的值.

查看答案和解析>>

同步练习册答案