精英家教网 > 高中数学 > 题目详情
已知f(x)=
(sinx+cosx)2
2+2sin2x-cos22x

(1)求f(x)的定义域、值域;
(2)若f(x)=2,-
π
4
<x<
4
,求x的值.
f(x)=
1+sin2x
(sin2x+1)2
=
1
1+sin2x
(4分)
(1)因为1+sin2x≠0所以sin2x≠-1,2x≠2kπ-
π
2
(k∈Z),x≠kπ-
π
4
(k?Z).
又0<1+sin2x≤2,所以f(x)≥
1
2

所以定义域为{x|x≠kπ-
π
4
,k∈Z},值域为:{y|y≥
1
2
}(4分)
(2)因为f(x)=2,所以
1
1+sin2x
=2
sin2x=-
1
2

因为-
π
4
<x<
4
所以-
π
2
<2x<
2

所以2x=-
π
6
2x=
6

所以x=-
π
12
x=
12
(6分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知曲线C:y=
1
x
Cn:y=
1
x+2-n
(n∈N*)
.从C上的点Qn(xn,yn)作x轴的垂线,交Cn于点Pn,再从Pn作y轴的垂线,交C于点Qn+1(xn+1,yn+1).设x1=1,an=xn+1-xn,bn=yn-yn+1
(I)求a1,a2,a3的值;
(II)求数列{an}的通项公式;
(III)设△PiQiQi+1(i∈N*)和面积为Si,记f(n)=
n
i=1
Si
,求证f(n)<
1
6
.

查看答案和解析>>

同步练习册答案