精英家教网 > 高中数学 > 题目详情
13.已知数列{an}满足a1=2,且an+1=2an+(2n-1)(n∈N*),求数列{an}的通项公式.

分析 把已知的数列递推式变形,得到数列{an+1-an+2}是以5为首项,以2为公比的等比数列,写出等比数列的通项公式后结合an+1=2an+(2n-1)(n∈N*)求数列{an}的通项公式.

解答 解:由an+1=2an+2n-1,得
an+2=2an+1+2(n+1)-1,
两式作差得:an+2-an+1=2an+1-2an+2,
则$\frac{{a}_{n+2}-{a}_{n+1}+2}{{a}_{n+1}-{a}_{n}+2}$=2,
又a1=2,∴a2=5,
a2-a1+2=5.
∴数列{an+1-an+2}是以5为首项,以2为公比的等比数列,
则${a}_{n+1}-{a}_{n}+2=5•{2}^{n-1}$,
即2an+(2n-1)-an+2=5•2n-1
∴${a}_{n}=5•{2}^{n-1}-2n-1$.

点评 本题考查了数列递推式,考查了等比关系的确定,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.有下列四个命题:
①在△ABC中,a、b分别是角A、B所对的边,若a<b,则sinA<sinB;
②若a>b,则$-\frac{1}{a}>-\frac{1}{b}$;
③在正项等比数列{an}中,若a4a5=9,则log3a1+log3a2+…+log3a8=8;
④若关于x的不等式mx2+mx+1>0恒成立,则m的取值范围是[0,4).
其中所有正确命题的序号为①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}满足an+1-2an=0,且a1=3.
(1)写出数列的通项公式;
(2)96是数列中的项吗?若是,是第几项,若不是说明理由;
(3)若bn=3an+1,数列{bn}的前n项和为Sn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设F1,F2分别为双曲线C的左右焦点,直线l过F2且与C的右支交于A,B两点,若△F1AB为直角三角形,且|F1A|,|AB|,|F1B|成等差数列,则双曲线C的离心率为(  )
A.$\sqrt{10}$B.$\frac{\sqrt{10}}{2}$C.$\frac{\sqrt{10}}{3}$D.$\frac{2\sqrt{10}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个三棱锥三视图如图所示,则该三棱锥的外接球的表面积为(  )
A.25πB.$\frac{29π}{4}$C.116πD.29π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知点A(1,2$\sqrt{2}$),B(0,0),C(1,0),设∠BAC的平分线AE与BC相交于E,如果$\overrightarrow{BC}$=λ$\overrightarrow{CE}$,那么λ等于-$\frac{3+2\sqrt{2}}{2\sqrt{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图4,四边形ABCD为菱形,∠ABC=60°.PA⊥平面ABCD,E为PC中点.
(Ⅰ)求证:平面BED⊥平面ABCD;
(Ⅱ)求平面PBA与平面EBD所成二面角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图所示,已知点G是△ABC的重心,过点G作直线与AB,AC两边分别交于M,N两点,且$\overrightarrow{AM}$=x$\overrightarrow{AB}$,$\overrightarrow{AN}$=y$\overrightarrow{AC}$,则x+2y的最小值为(  )
A.2B.$\frac{1}{3}$C.$\frac{{3+2\sqrt{2}}}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.计算 $\sqrt{a\sqrt{a}\sqrt{a}}$=a.

查看答案和解析>>

同步练习册答案