精英家教网 > 高中数学 > 题目详情
8.平面外ABC的一点P,AP、AB、AC两两互相垂直,过AC的中点D做ED⊥面ABC,且ED=1,PA=2,AC=2,连接BP,BE,多面体B-PADE的体积是$\frac{\sqrt{3}}{3}$;
(1)画出面PBE与面ABC的交线,说明理由;
(2)求面PBE与面ABC所成的锐二面角的大小.

分析 (1)延长PE交AC于F,可证F与C重合,故直线BC即为面PBE与面ABC的交线;
(2)以A为原点,AB为x轴,AC为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出面PBE与面ABC所成的锐二面角的大小.

解答 解:(1)延长PE交AC于F,直线BC即为面PBE与面ABC的交线;
理由如下:
∵AP、AB、AC两两互相垂直,
∴PA⊥平面ABC,
∵DE⊥平面ABC,
∴DE∥PA,
∴$\frac{DF}{AF}$=$\frac{DE}{PA}=\frac{1}{2}$,
∴F与C重合.
∵C∈PE,C∈AC,PE?平面PBE,AC?平面ABC,
∴C是平面PBE和平面ABC的公共点,
又B是平面PBE和平面ABC的公共点,
∴BC是面PBE与面ABC的交线.
(2)∵AP、AB、AC两两互相垂直,
∴AB⊥平面PAC,∴VB-PADE=$\frac{1}{3}$S梯形ADEP•AB=$\frac{1}{3}$(1+2)×1×AB=$\frac{\sqrt{3}}{3}$,解得AB=$\frac{2\sqrt{3}}{3}$.
以A为原点,AB为x轴,AC为y轴,AP为z轴,建立空间直角坐标系,
B($\frac{2\sqrt{3}}{3}$,0,0),P(0,0,2),E(0,1,1),
$\overrightarrow{PB}$=($\frac{2\sqrt{3}}{3}$,0,2),$\overrightarrow{PE}$=(0,1,-1),
设二面角PBE的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PB}=\frac{2\sqrt{3}}{3}x+2z=0}\\{\overrightarrow{n}•\overrightarrow{PE}=y-z=0}\end{array}\right.$,取y=1,得$\overrightarrow{n}$=(-$\sqrt{3}$,1,1),
平面ABC的法向量$\overrightarrow{m}$=(0,0,1),
∴cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{5}}$=$\frac{\sqrt{5}}{5}$,
∴面PBE与面ABC所成的锐二面角的大小为arccos$\frac{\sqrt{5}}{5}$.

点评 本题考查了平面的性质,二面角的计算,属于中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.某同学去年寒假期间对其30位亲友的饮食习惯作了一次调查,其中12位五十岁以下的亲友中有4位偏爱蔬菜:18位五十岁以上的亲友中有2位偏爱肉类.
(1)完成如下的2×2列联表:
偏爱蔬菜偏受肉类合计
五十岁以下
五十岁以上
合计
(2)有多大的把握认为“其亲友的饮食习惯与年龄有关”?
(3)若要从这30位亲友中抽出5人进行有关饮食习惯方面的进一步调查,该如何合量地进行抽样?
附计算公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
附表:
P(K2≥k00.0100.0050.001
k06.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x) 在R上满足f(x)=2f(2-x)-x2+8x-8,则曲线y=f(x)在点(1,f(1))处的切线方程是(  )
A.y=-2x+3B.y=2x-1C.y=-6x+7D.y=3x-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是(  )
A.y=x3B.y=ln|x|C.y=sin($\frac{π}{2}$-x)D.y=-x2-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名高三学生的课外体育锻炼平均每天运动的时间进行调查,如表:(平均每天锻炼的时间单位:分钟)
平均每天锻炼
的时间(分钟)
[0,10)[10,20)[20,30)[30,40)[40,50)[50,60)
总人数203644504010
将学生日均课外课外体育运动时间在[40,60)上的学生评价为“课外体育达标”.
(Ⅰ)请根据上述表格中的统计数据填写下面2×2列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?
课外体育不达标课外体育达标合计
20110
合计
(Ⅱ)将上述调查所得到的频率视为概率.现在从该校高三学生中,抽取3名学生,记被抽取的3名学生中的“课外体育达标”学生人数为X,若每次抽取的结果是相互独立的,求X的数学期望和方差.
参考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.
参考数据:
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=(x2-ax-a)ex,求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设函数f(x)=$\frac{1}{2}$x2-9lnx在区间[a-$\frac{1}{2}$,a+$\frac{1}{2}$]上单调递减,则实数a的取值范围是($\frac{1}{2}$,$\frac{5}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\sqrt{3}$sin(ωx+φ)-cos(ωx+φ)(0<φ<π,ω>0)为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为$\frac{π}{2}$.
(1)求f($\frac{π}{4}$-α)=$\frac{3\sqrt{7}}{4}$,α∈($\frac{π}{4}$,$\frac{π}{2}$),求sinα的值;
(2)将函数y=f(x)的图象向右平移$\frac{π}{6}$个单位长度后,再将得到的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)在[-π,π]上的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图所示的三角形数阵叫“莱布尼兹调和三角形”,它们是由整数的倒数组成的,第n行有n个数且两端的数均为$\frac{1}{n}$(n≥2),每个数是它下一行左右相邻两数之和,如$\frac{1}{1}$=$\frac{1}{2}$+$\frac{1}{2}$,$\frac{1}{2}$=$\frac{1}{3}$+$\frac{1}{6}$,$\frac{1}{3}$=$\frac{1}{4}$+$\frac{1}{12}$,…,则第n(n≥4)行倒数第四个数(从右往左数)为$\frac{1}{{n•C_{n-1}^3}}$或$\frac{6}{n(n-1)(n-2)(n-3)}$.

查看答案和解析>>

同步练习册答案