精英家教网 > 高中数学 > 题目详情

【题目】一组数据的平均数是2.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是(  )
A.57.2,3.6
B.57.2,56.4
C.62.8,63.6
D.62.8,3.6

【答案】D
【解析】设这组数据分别为x1 , x2 , xn , 则=(x1+x2+…+xn),
方差为s2=[(x12+…+(xn2],
每一组数据都加60后,
=(x1+x2+…+xn+60n)=+60
=2.8+60=62.8,
方差s′2=+…+(xn+60﹣62.8)2]
=s2=3.6.
故选D.
首先写出原来数据的平均数表示式和方差的表示式,把数据都加上60以后,再表示出新数据的平均数和方差的表示式,两部分进行比较,得到结果.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】连续2次抛掷﹣枚骰子(六个面上分别标有数字1,2,3,4,5,6).则事件“两次向上的数字之和等于7”发生的概率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)设抛物线的顶点在坐标原点,焦点轴正半轴上,过点的直线交抛物线于两点,线段的长是的中点到轴的距离是

(1)求抛物线的标准方程;

(2)在抛物线上是否存在不与原点重合的点,使得过点的直线交抛物线于另一点,满足,且直线与抛物线在点处的切线垂直?并请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自驾游从地到地有甲乙两条线路,甲线路是,乙线是,其中段、段、段都是易堵车路段.假设这三条路段堵车与否相互独立.这三条路段的堵车概率及平均堵车时间如表1所示.经调查发现,堵车概率上变化, 上变化.在不堵车的情况下.走线路甲需汽油费500元,走线路乙需汽油费545元.而每堵车1小时,需多花汽油费20元.路政局为了估计段平均堵车时间,调查了100名走甲线路的司机,得到表2数据.

CD段

EF段

GH段

堵车概率

平均堵车时间

(单位:小时)

2

1

(表1)

堵车时间(单位:小时)

频数

8

6

38

24

24

(表2)

(1)求段平均堵车时间的值.

(2)若只考虑所花汽油费期望值的大小,为了节约,求选择走甲线路的概率.

(3)在(2)的条件下,某4名司机中走甲线路的人数记为X,求X的数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若二次函数满足f(x+1)﹣f(x)=2x且f(0)=1.
(1)求f(x)的解析式;
(2)若在区间[﹣1,1]上不等式f(x)>2x+m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)(x∈R)为奇函数,f(1)= ,f(x+2)=f(x)+f(2),则f(5)=(
A.0
B.1
C.
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲厂根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为G(x)(万元),其中固定成本为3万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本),销售收入R(x)= ,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:
(1)写出利润函数y=f(x)的解析式(利润=销售收入﹣总成本);
(2)甲厂生产多少台新产品时,可使盈利最多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 ).

(Ⅰ)求函数的单调增区间;

(Ⅱ)当时,记,是否存在整数,使得关于的不等式有解?若存在,请求出的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣x2+4x+a,x∈[0,1],若f(x)有最小值﹣2,则f(x)的最大值为(
A.1
B.0
C.﹣1
D.2

查看答案和解析>>

同步练习册答案