精英家教网 > 高中数学 > 题目详情
抛物线的焦点为,点在抛物线上,且,过弦中点作准线的垂线,垂足为,则的最大值为_________.

试题分析:解:设AF=a,BF=b,由抛物线定义,2|MM1|=a+b.而余弦定理,|AB|2=a2+b2-2abcos120°=(a+b)2-ab, ,所以的最大值为
点评:本题主要考查抛物线的应用和余弦定理的应用.考查了学生综合分析问题和解决问题的能力
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

过抛物线的焦点F作斜率分别为的两条不同的直线,且相交于点A,B,相交于点C,D。以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在的直线记为
(I)若,证明;
(II)若点M到直线的距离的最小值为,求抛物线E的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线y2=4x的焦点为F,过点P(2,0)的直线交抛物线于A(x1,y1)和B(x2,y2)两点.则:(I)y1 y2=     ;(Ⅱ)三角形ABF面积的最小值是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线()上一点到其准线的距离为.

(Ⅰ)求的值;
(Ⅱ)设抛物线上动点的横坐标为),过点的直线交于另一点,交轴于点(直线的斜率记作).过点的垂线交于另一点.若恰好是的切线,问是否为定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线的焦点到准线的距离为4,则此抛物线的焦点坐标为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线及点,直线的斜率为1且不过点P,与抛物线交于A,B两点。
(1) 求直线轴上截距的取值范围;
(2) 若AP,BP分别与抛物线交于另一点C,D,证明:AD、BC交于定点。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设抛物线上一点P到y轴的距离是4,则点P到该抛物线的焦点的距离是  (     )
A.6 B.4C.8D.12

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线上一点到其焦点的距离为5,双曲线的左顶点为,若双曲线的一条渐近线与直线平行,则实数的值是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知直线上有一个动点,过点作直线垂直于轴,动点上,且满足
(为坐标原点),记点的轨迹为.
(1)求曲线的方程;
(2)若直线是曲线的一条切线, 当点到直线的距离最短时,求直线的方程. 

查看答案和解析>>

同步练习册答案