精英家教网 > 高中数学 > 题目详情
15.已知x、y∈R+,且满足$\frac{1}{x}$+$\frac{2}{y}$=2,则8x+y的取值范围是[9,+∞).

分析 利用已知条件,结合基本不等式求解表达式的最值即可.

解答 解:∵x、y∈R+,且满足$\frac{1}{x}$+$\frac{2}{y}$=2,
∴8x+y=$\frac{1}{2}$($\frac{1}{x}$+$\frac{2}{y}$)(8x+y)=$\frac{1}{2}$(10+$\frac{y}{x}$+$\frac{16x}{y}$)≥$\frac{1}{2}$(10+8)=9,
当且仅当$\frac{y}{x}$=$\frac{16x}{y}$,即x=$\frac{3}{4}$,y=3时,取等号,
∴8x+y的取值范围是[9,+∞).
故答案为:[9,+∞).

点评 本题考查基本不等式在最值中的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.设A、B是全集U的非空子集,A?∁UB,则下列集合中,空集为(  )
A.A∪BB.UA∪BC.A∩BD.UA∩∁UB

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知A(2,4),B(5,3),则$\overrightarrow{AB}$=(3,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知点A(1,1),B(-1,5),向量$\overrightarrow{AC}$=2$\overrightarrow{AB}$,则点C的坐标为(-3,9).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(Ⅰ)求不等式|x-3|-2|x-1|≥-1的解集;
(Ⅱ)已知a,b∈R*,a+b=1,求证:(a+$\frac{1}{a}$)2+(b+$\frac{1}{b}$)2≥$\frac{25}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.方程ax+by+c=0表示倾斜角为锐角的直线,则必有(  )
A.ab>1B.ab<0C.a>0或b<0D.a>0且b<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数f(x)在R上存在导数f′(x),?x∈R,有g(x)=f(x)-$\frac{1}{2}$x2,且f′(x)<x,若f(4-m)-f(m)≥8-4m,则实数m的取值范围是(  )
A.[-2,2]B.[2,+∞)C.[0,+∞)D.(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C的对边分别为a,b,c.
(1)若2asinB=$\sqrt{3}$b,A为锐角,求A的值;
(2)若b=5,c=$\sqrt{5}$,cosC=$\frac{9}{10}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列四个命题:
①“x<2”是“x2-x<0”成立的必要不充分条件;
②命题“?x∈R,x2+5x=6”的否定是“?x0∉R,x02+5x0≠6”;
③若x>y,则x2>y2
④若p∨q为假命题,则p,q均为假命题.
其中正确的命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案