精英家教网 > 高中数学 > 题目详情
如图,已知(a>c),且,C为动点.
(1)建立适当的平面直角坐标系,求出点P的轨迹方程;
(2)若点P的轨迹上存在两个不同的点E、F,且线段EF的中垂线与AB(或AB的延长线)相交于一点Q,求出点Q的活动范围.

【答案】分析:(1)由已知,根据向量关系,结合线段中垂线性质,研究出==2a>2c,得知点P是以A,B为焦点,长轴长为2a的椭圆,可写出其轨迹方程.
 (2)设E(x1,y1),F(x2,y2),Q(x,0),得出 x=,再根据-a≤x1≤a,-a≤x2≤a求出|x|<.点在与AB中点相距 的线段上活动(不包括两端点).
解答:解:如图,以A,B所在直线为x轴,A,B的中垂线为y轴,建立平面直角坐标系.由题设,2=0,
∴|
==2a>2c
∴点P是以A,B为焦点,长轴长为2a的椭圆.即=1
(2)设E(x1,y1),F(x2,y2),Q(x,0)
x1≠x2
即(x1-x)2+y12=(x2-x2+y22 ①
又E,F在轨迹上,∴=1,=1
 将y12,y22 ,代入①式整理,得
2(x2-x1)═(x2-x12       
∵x1≠x2,∴x=
-a≤x1≤a,-a≤x2≤a,
-2a<x1+x2 <2a
-<x
即|x|<
∴点在与AB中点相距 的线段上活动(不包括两端点).
点评:本题考查椭圆的定义、标准方程,椭圆的简单几何性质,直线与椭圆位置关系.(1)中得出而==2a>2c (2)中得出 x=是关键.考查解析法的思想、计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知正方体ABCD-A'B'C'D'的棱长为a,M为BD'的中点,点N在AC'上,且|A'N|=3|NC'|,试求MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知长方体ABCD-ABCD中,AB=2
3
,AD=2
3
,AA=2,则异面直线AA和BC所成的角为(  )°.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知长方体ABCD-A′B′C′D′中,AB=2
3
,AD=2
3
,AA′=2,
(1)哪些棱所在直线与直线BA’是异面直线?
(2)直线BC与直线A’C’所成角是多少度?
(3)哪些棱所在直线与直线AA’是垂直?

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知长方体ABCD-A′B′C′D′中,AB=2
3
,BC=2
3
,AA′=2

(1)CD和B′D′所成的角是多少度;
(2)BB′和CD′所成的角是多少度.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正方体ABCD—A′B′C′D′.

①哪些棱所在直线与直线BA′是异面直线?

②直线BA′和CC′的夹角是多少?

③哪些棱所在的直线与直线AA′垂直?

查看答案和解析>>

同步练习册答案