精英家教网 > 高中数学 > 题目详情
18.8张椅子排成一排,有4个人就座,每人1个座位,恰有3个连续空位的坐法共有多少种?(  )
A.240B.360C.480D.320

分析 先把3个空位看成一个整体,把4个人排列好,再把3个空位构成的一个整体与另一个空位插入这4个人形成的5个“空”中,根据分步计数原理,可得结论.

解答 解:先把3个空位看成一个整体,把4个人排列好,有A44=24种方法.
再把3个空位构成的一个整体与另一个空位插入这4个人形成的5个“空”中,有A52=20种方法,
再根据分步计数原理,恰有3个连续空位的坐法共有24×20=480种.
故选:C.

点评 本题主要考查排列、组合、两个基本原理的应用,相邻问题用捆绑法,不相邻问题用插空法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知f(x)=$\left\{\begin{array}{l}{(3-a)x-a,x≤1}\\{lo{g}_{a}x,x>1}\end{array}\right.$是(-∞,+∞)上是增函数,那么实数a的取值范围是(  )
A.(1,+∞)B.($\frac{3}{2}$,3)C.[$\frac{3}{2}$,3)D.(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若α,β为锐角,且满足cosα=$\frac{4}{5}$,cos(α+β)=$\frac{3}{5}$,则sinβ的值为(  )
A.$\frac{17}{25}$B.$\frac{3}{5}$C.$\frac{7}{25}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,点D是BC的中点,若AB⊥AD,∠CAD=30°,BC=2$\sqrt{7}$,则△ABC的面积为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知a,b均为正数,$\frac{1}{a}+\frac{4}{b}=3$,则使a+b≥c恒成立的c的取值范围是(  )
A.(-∞,1]B.(-∞,2]C.(-∞,3]D.(-∞,9]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知二次函数f(x)的二次项系数为a,且不等式f(x)<-2x的解集为(1,3),且方程f(x)+6a=0有两个相等的实根,则f(x)的解析式为f(x)=x2-6x+3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.据统计,我国每年交通事故亡人数已经超过了10万人,我国汽车保有量不到全世界2%,但是交通事故死亡人数占全球的比例达到20%,其中一个很重要的原因是国内许多驾驶员都没有养成正确的驾驶习惯,没有掌握事故发生前后正确的操作方法.某地交通管理部门从当地某驾校当期学员中随机抽取9名学员参加交通法规知识抽测,该活动设置有A、B、C三个等级,分别对应5分、4分、3分,恰好各有3名学员进入三个级别.从中随机抽取n名学员(假设各人被抽取的可能性是均等的,1≤n≤9),再将抽取的学员的成绩求和.
(I)求n=2时,抽取的学员的成绩和恰为8分的概率.
(Ⅱ)假设一班和二班各有9名学员参加考试,分数用百分制来计算,茎叶图如图所示:
已知一班9位学员的平均成绩为80分,
①求x的值,及这9位学员成绩的方差.
②请根据茎叶图及其数字特征分析:哪班成绩较好?哪班成绩更稳定?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若sinα+sinβ=$\frac{1}{2},cosα-cosβ=\frac{1}{3}$,则cos(α+β)的值为$\frac{59}{72}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列的递推公式a1=1,an+1=an+$\frac{1}{{a}_{n}}$(n≥1),写出它的前5项.

查看答案和解析>>

同步练习册答案