精英家教网 > 高中数学 > 题目详情
已知函数f(x)=cos(ωx+φ)(ω>0,π≤φ<2π)为偶函数,且其图象上相邻最高点与最低点之间的距离为
4+π2

(1)求函数f(x)的解析式;
(2)求函数f(x)在区间[0,4π]内的所有零点之和.
(1)函数f(x)=cos(ωx+φ)(ω>0)为偶函数,∴cosφ=±1,∴φ=kπ,k∈z.
再由 π≤φ<2π 可得 φ=π,∴函数f(x)=cos(ωx+π)=-cosωx,故其周期为
ω
,最大值为1.
设图象上最高点为(x1,1),与之相邻的最低点为(x2,-1),则|x2-x1|=
T
2
=
π
ω

∵其图象上相邻最高点与最低点之间的距离为
4+π2
=
(
π
ω
)
2
+22
,解得ω=1,
∴函数f(x)=-cosx.
(2)函数f(x)在[0,4π]内的所有零点为:
π
2
2
,2π+
π
2
,2π+
2

∴函数f(x)在[0,4π]内的所有零点之和为
π
2
+
2
+(2π+
π
2
)+(2π+
2
)=8π
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
|x+
1
x
|,x≠0
0     x=0
,则关于x的方程f2(x)+bf(x)+c=0有5个不同实数解的充要条件是(  )
A、b<-2且c>0
B、b>-2且c<0
C、b<-2且c=0
D、b≥-2且c=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sinxcosx-cos2x-
1
2
,x∈R.
(1)求函数f(x)的最小值和最小正周期;
(2)已知△ABC内角A、B、C的对边分别为a、b、c,满足sinB-2sinA=0且c=3,f(C)=0,求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
1
4
x+
3
4x
-1,g(x)=x2-2bx+4,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),则实数b的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象如图所示,则函数的值域为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+c(a,b,c∈R)满足f(0)≥2,f(1)≥2,方程f(x)=0在区间(0,1)上有两个实数根,则实数a的取值范围为
(4,+∞)
(4,+∞)

查看答案和解析>>

同步练习册答案