精英家教网 > 高中数学 > 题目详情
已知曲线C:y=
1
x
的一条切线l与两坐标轴交于A,B两点,则线段AB长度的最小值为
 
分析:求出函数的定义域,设出切点,求出切点处的导数,由点斜式得到切线方程,求出切线在x轴和y轴上的截距,得到AB的长度,由基本不等式求得线段AB长度的最小值.
解答:解:函数y=
1
x
的定义域为(0,+∞),
(x0
1
x0
)
 (x0>0)为曲线C:y=
1
x
上的任意一点,
y|x=x0=-
1
2
x03

∴曲线C在(x0
1
x0
)
处的切线方程为y-
1
x0
=-
1
2
x03
(x-x0)

取y=0,得x=3x0
取x=0,得y=
3
2
x0

|AB|=
9x02+
9
4x0
=
9x02+
9
8x0
+
9
8x0
3
39x02
9
8x0
9
8x0
=
9
4
=
3
3
2

故答案为:
3
3
2
点评:本题考查了利用导数研究曲线上某点处的切线方程,考查了利用基本不等式求函数最值,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知曲线C:y=
1
x
Cn:y=
1
x+2-n
(n∈N*)
.从C上的点Qn(xn,yn)作x轴的垂线,交Cn于点Pn,再从Pn作y轴的垂线,交C于点Qn+1(xn+1,yn+1).设x1=1,an=xn+1-xn,bn=yn-yn+1
(I)求a1,a2,a3的值;
(II)求数列{an}的通项公式;
(III)设△PiQiQi+1(i∈N*)和面积为Si,记f(n)=
n
i=1
Si
,求证f(n)<
1
6
.

查看答案和解析>>

科目:高中数学 来源: 题型:

加试题:已知曲线C:y=
1
x
(x>0)
,过P1(1,0)作y轴的平行线交曲线C于Q1,过Q1作曲线C的切线与x轴交于P2,过P2作与y轴平行的直线交曲线C于Q2,照此下去,得到点列P1,P2,…,和Q1,Q2,…,设|
PnQn
|=an
2
|
QnQn+1
|=bn(n∈N*)

(1)求数列{an}的通项公式;
(2)求证:b1+b2+…+bn>2n-2-n
(3)求证:曲线C与它在点Qn处的切线,以及直线Pn+1Qn+1所围成的平面图形的面积与正整数n的值无关.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知曲线C:y=
1
x
在点P(1,1)处的切线与x轴交于点Q1,过点Q1作x轴的垂线交曲线C于点P1,曲线C在点P1处的切线与x轴交于点Q2,过点Q2作x轴的垂线交曲线C于点P2,…,依次得到一系列点P1、P2、…、Pn,设点Pn的坐标为(xn,yn)(n∈N*).
(Ⅰ)求数列{xn}的通项公式;
(Ⅱ)求三角形OPnPn+1的面积S△OPnPn+1
(Ⅲ)设直线OPn的斜率为kn,求数列{nkn}的前n项和Sn,并证明Sn
4
9

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•南京二模)如图,已知曲线C:y=
1
x
Cn:y=
1
x+2-n
(n∈N*)
.从C上的点Qn(xn,yn)作x轴的垂线,交Cn于点Pn,再从点Pn作y轴的垂线,交C于点Qn+1(xn+1,yn+1),设x1=1,an=xn+1-xn,bn=yn-yn+1
(Ⅰ)求Q1,Q2的坐标;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)记数列{an•bn}的前n项和为Sn,求证:Sn
1
3

查看答案和解析>>

同步练习册答案