(注意:在试题卷上作答无效)
设数列
的前
项和为
,对一切
,点
都在函数
的图象上.
(Ⅰ)求
及数列
的通项公式
;
(Ⅱ) 将数列
依次按1项、2项、3项、4项循环地分为(
),(
,
),(
,
,
),(
,
,
,
);(
),(
,
),(
,
,
),(
,
,
,
);(
),…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为
,求
的值;
(Ⅲ)令
(
),求证:
.
解:(1)因为点
在函数
的图象上,
故
,所以
.令
,得
,所以
;
令
,得
,
;令
,得
,
.
由此猜想:
.
用数学归纳法证明如下:
①
当
时,有上面的求解知,猜想成立.
②
假设
时猜想成立,即
成立,
则当
时,注意到![]()
,
故
,
.
两式相减,得
,所以
.
由归纳假设得,
,故
.
这说明
时,猜想也成立.
由①②知,对一切
,
成立
. (4分)
另解:因为点
在函数
的图象上,
故
,所以
①.
令
,得
,所以
;
时
②
时①-②得![]()
令
,
即
与
比较可得
,解得
.
因此![]()
又
,所以
,从而
.
(2)因为
(
),所以数列
依次按1项、2项、3项、4项循环地分为(2),(4,6),(8,10,12),(14,16,18,20);(22),(24,26),(28,30,32),(34,36,38,40);(42),….每一次循环记为一组.由于每一个循环含有4个括号, 故
是第25组中第4个括号内各数之和.由分组规律知,由各组第4个括号中所有第1个数组成的数列是等差数列,且公差为20.同理,由各组第4个括号中所有第2个数、所有第3个数、所有第4个数分别组成的数列也都是等差数列,且公差均为20.故各组第4个括号中各数之和构成等差数列,且公差为80.注意到第一组中第4个括号内各数之和是68,
所以
.又
=22,所以
=2010
(9分)
(3)有(1)中知
,∴
,
当
时,
;
当
时,![]()
显然![]()
而
(
)
![]()
. (14分)
科目:高中数学 来源:2012-2013学年湖北省高三9月月考数学试卷(解析版) 题型:解答题
(本小题满分14分)(注意:在试题卷上作答无效)
已知曲线
,从
上的点
作
轴的垂线,交
于点
,再从点
作
轴的垂线,交
于点
,设![]()
![]()
(1)求数列
的通项公式;
(2)记
,数列
的前
项和为
,试比较
与
的大小
;
(3)记
,数列
的前
项和为
,试证明:![]()
![]()
查看答案和解析>>
科目:高中数学 来源:2011-2012学年四川省高考压轴理科数学试卷(解析版) 题型:解答题
(本小题满分14分)(注意:在试题卷上作答无效)
已知曲线
,从
上的点
作
轴的垂线,交
于点
,再从点
作
轴的垂线,交
于点
,设![]()
![]()
(1)求数列
的通项公式;
(2)记
,数列
的前
项和为
,试比较
与
的大小
;
(3)记
,数列
的前
项和为
,试证明:![]()
![]()
查看答案和解析>>
科目:高中数学 来源:2011-2012学年四川省高考压轴理科数学试卷(解析版) 题型:解答题
(本小题满分14分)(注意:在试题卷上作答无效)
已知椭圆
的左、右焦点分别为
,若以
为圆心,
为半径作圆
,过椭圆上一点
作此圆的切线,切点为
,且
的最小值不小于为
.
(1)求椭圆的离心率
的取值范围;
(2)设椭圆的短半轴长为
,圆
与
轴的右交点为
,过点
作斜率为
的直线
与椭圆相交于
两点,若
,求直线
被圆
截得的弦长
的最大值.
![]()
查看答案和解析>>
科目:高中数学 来源:2010-2011学年广西省南宁市高三第二次适应性考试数学理卷 题型:解答题
(本小题共12分)(注意:在试题卷上作答无效)
已知抛物线
上一动点P,抛物线内一点A(3,2) ,F为焦点且
的最小值为
.
(1)求抛物线的方程以及使得
取最小值时的P点坐标;
(2)过(1)中的P点作两条互相垂直的直线与抛物线分别交于C、D两点,直线CD是否过一定点?若是,求出该定点的坐标,若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)(注意:在试题卷上作答无效)
过抛物线
的对称轴上一点
的直线与抛物线相交于M、N两点,自M、N向直线
作垂线,垂足分别为
、
。
(Ⅰ)当
时,求证:
⊥
;
(Ⅱ)记![]()
、
、
的面积分别为
、
、
,是否存在
,使得对任意的
,都有
成立。若存在,求出
的值;若不存在,说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com