精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=x3+ln(x+$\sqrt{{x}^{2}+1}$)满足f(1+a)+1+ln($\sqrt{2}$+1)<0,若实数a的取值范围是(-∞,b),则b=2.

分析 分析函数的单调性和奇偶性,可将f(1+a)+1+ln($\sqrt{2}$+1)<0,化为1<-a-1,求出a的取值范围后,可得答案.

解答 解:∵函数f(x)=x3+ln(x+$\sqrt{{x}^{2}+1}$),
∴f(-x)+f(x)=-x3+ln(-x+$\sqrt{{x}^{2}+1}$)+x3+ln(x+$\sqrt{{x}^{2}+1}$)=0,
即函数f(x)为定义在R上的奇函数,
又∵y=x3和y=ln(x+$\sqrt{{x}^{2}+1}$)均为增函数,故函数f(x)=x3+ln(x+$\sqrt{{x}^{2}+1}$)为增函数,
当x=1时,f(x)=x3+ln(x+$\sqrt{{x}^{2}+1}$)=1+ln($\sqrt{2}$+1),
若f(1+a)+1+ln($\sqrt{2}$+1)<0,
则1+ln($\sqrt{2}$+1)<-f(1+a)=f(-a-1),
故1<-a-1,
则a<-2,
又由满足条件的实数a的取值范围是(-∞,b),则b=2,
故答案为:2

点评 本题考查的知识点是函数的单调性与函数的奇偶性,是函数图象和性质的综合应用,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.定义在R上的函数f(x)满足f(x)+f(x+5)=16,当x∈(-1,4)时,f(x)=x2-2x,则函数f(x)在[0,2015]上的零点个数是605.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若偶函数f(x)在区间(-∞,0]上单调递减,且f(7)=0,则不等式(x-1)f(x)>0的解集是(  )
A.(-∞,-1)∪(1,+∞)B.(-∞,-7)∪(7,+∞)C.(-7,1)∪(7,+∞)D.(-7,1]∪(7,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知f(x)=$\frac{{{{log}_2}x-1}}{{2{{log}_2}x+1}}$(x>2),已知f(x1)+f(2x2)=$\frac{1}{2}$,则f(x1x2)的最小值=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=$\frac{2x+1}{{x}^{2}+2}$在区间[0,2]上的最大值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某班第一小组8位同学数学测试成绩用茎叶图表示(如图),其中茎为十位数,叶为个位数,则这组数据的中位数是(  )
A.90.5B.91.5C.92D.92.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知平面内两点A(2acos2$\frac{ωx+φ}{2}$,1),B(1,$\sqrt{3}$asin(ωx+φ)-a),(a≠0,ω>0,0<φ<$\frac{π}{2}$),设函数f(x)=$\overrightarrow{OA}$•$\overrightarrow{OB}$,若f(x)的图象相邻两最高点的距离为π,且有一个对称中心为($\frac{π}{3}$,0).
(1)求ω和φ的值;   
(2)求f(x)的单调递增区间;
(3)若a>0,试讨论k为何值时,方程f(x)-k=0(x∈[0,a])有解.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若cos(α-β)cosβ-sin(α-β)sinβ=-m,且α为第三象限,则sinα的值(  )
A.-$\sqrt{1-{m}^{2}}$B.$\sqrt{1-{m}^{2}}$C.$\sqrt{{m}^{2}-1}$D.-$\sqrt{{m}^{2}-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,函数y=f(x)是可导函数,曲线y=f(x)过点(2,3),且在x=2处的切线l在y轴上的截距为2,令g(x)=xf(x),则曲线y=g(x)在x=2处的切线方程是4x-y-2=0.

查看答案和解析>>

同步练习册答案