【题目】已知椭圆与圆:有且仅有两个公共点,点、、分别是椭圆上的动点、左焦点、右焦点,三角形面积的最大值是.
(1)求椭圆的方程;
(2)若点在椭圆第一象限部分上运动,过点作圆的切线,过点作的垂线,求证:,交点的纵坐标的绝对值为定值.
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当时,求函数在点处的切线方程;
(2)若,求函数的单调区间;
(3)若函数有两个极值点,若过两点的直线与轴的交点在曲线上,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,长为,宽为的矩形纸片中,为边的中点,将沿直线翻转(平面),若为线段的中点,则在翻转过程中,下列说法错误的是( )
A. 平面
B. 异面直线与所成角是定值
C. 三棱锥体积的最大值是
D. 一定存在某个位置,使
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线经过点,过作两条不同直线,其中直线关于直线对称.
(Ⅰ)求抛物线的方程及准线方程;
(Ⅱ)设直线分别交抛物线于两点(均不与重合),若以线段为直径的圆与抛物线的准线相切,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆经过点,且长轴长是短轴长的2倍.
(1)求椭圆的标准方程;
(2)若点在椭圆上运动,点在圆上运动,且总有,求的取值范围;
(3)过点的动直线交椭圆于、两点,试问:在此坐标平面上是否存在一个点,使得无论如何转动,以为直径的圆恒过点?若存在,请求出点的坐标;若不存在,请说明由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1) 直线kxy13k,当k变动时,所有直线都通过一个定点,求这个定点;
(2) 过点P(1,2)作直线l交x、y轴的正半轴于A、B两点,求使取得最大值时,直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,点A为椭圆的右顶点,点B为椭圆的上顶点,点F为椭圆的左焦点,且的面积是.
Ⅰ.求椭圆C的方程;
Ⅱ.设直线与椭圆C交于P、Q两点,点P关于x轴的对称点为(与不重合),则直线与x轴交于点H,求面积的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com