精英家教网 > 高中数学 > 题目详情
矩形ABCD中AB与BC长度之比为2:3,在矩形ABCD内任取一点P,则使∠APB<90°的概率为(  )
A、
π
12
B、
2
3
C、1-
π
8
D、1-
π
12
考点:几何概型
专题:概率与统计
分析:点P在矩形ABCD内,若使∠APB<90°,则P应在以AB为直径的半圆外部,所以使∠APB<90°的概率是半圆外的面积比上矩形的面积.
解答: 解:如图,矩形ABCD中AB与BC长度之比为2:3,设AB=2,BC=3,图中白色区域是以AB为直径的半圆
当P落在半圆内时,∠APB>90°;
当P落在半圆上时,∠APB=90°;
当P落在半圆外时,∠APB<90°;
故使∠APB<90°的概率P=
S矩形-S半圆
S矩形
=1-
1
2
π×12
6
=1-
π
12

故选:D.
点评:本题考查的知识点是几何概型,关键是要画出满足条件的图形,结合图形分析,找出满足条件的点集对应的图形面积及图形的总面积.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,B是线段AC上一点,经测量,点D位于点A的北偏东30°方向8km,位于点B的正北方向,位于点C的北偏西75°方向上,并且AB=5km.
(1)求点B与D之间的距离(精确到0.1km);
(2)求点C与D之间的距离(精确到0.1km).
(参考数据:
3
=1.73,sin53°=0.80,cos38°=0.79)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的方程为x2+y2=4,过点M(2,4)作圆C的两条切线,切点分别为A,B,直线AB恰好经过椭圆T:
x2
a2
+
y2
b2
=1(a>b>0)的右顶点和上顶点.
(1)求椭圆T的方程;
(2)已知直线l:y=kx+
3
(k>0)与椭圆相交于P,Q两点,O为坐标原点,求△OPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=
n2+n
2
,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=2 an+an,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在椭圆外的黄豆数为70颗,以此实验数据为依据,可以估计出椭圆的面积大约为(  )
A、6B、12C、18D、20

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在[-3,3]上的奇函数,且f(x)在(0,1]是指数函数,在[1,3]上是二次函数,当1≤x≤3时f(x)≤f(2)=
3
2
,f(3)=
1
2
,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

方程22x=20的解集是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>b,则下列不等式正确的是(  )
A、ac>bc
B、a-c<b-c
C、a3>b3
D、
1
a
1
b

查看答案和解析>>

科目:高中数学 来源: 题型:

x
0
(1-t)3dt的展开式中x的系数是
 

查看答案和解析>>

同步练习册答案