精英家教网 > 高中数学 > 题目详情

如图所示,已知PA与⊙O相切,A为切点,过点P的割线交圆于B、C两点,弦CD∥AP,AD、BC相交于点E,F为CE上一点,且DE2 = EF·EC.

(Ⅰ)求证:CE·EB = EF·EP;

(Ⅱ)若CE:BE = 3:2,DE = 3,EF = 2,求PA的长.

 

【答案】

(I)证得

根据,得到

(II)

【解析】

试题分析:

(I)∵

又∵,∴

又∵

               5分

(II)

是⊙的切线,           10分

考点:相交弦定理、切割定理、三角形相似。

点评:中档题,作为选考内容,难度不大,主要涉及圆与三角形相似的基础知识。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

22、如图所示,已知PA与⊙O相切,A为切点,PBC为割线,,弦CD∥AP,AD、BC相交于E点,F为CE上一点,且DE2=EF•EC.
(Ⅰ)求证:∠P=∠EDF;
(Ⅱ)求证:CE•EB=EF•EP.

查看答案和解析>>

科目:高中数学 来源: 题型:

(选修4-1:几何证明选讲)
如图所示,已知PA与⊙O相切,A为切点,PBC为割线,弦CD∥AP,AD、BC相交于E点,F为CE上一点,且∠EDF=∠ECD.
(1)求证:EF•EP=DE•EA;
(2)若EB=DE=6,EF=4,求PA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知PA与⊙O相切,A为切点,PBC为割线,,弦CD∥AP,AD、BC相交于E点,F为CE上一点,且DE2=EF•EC.
(Ⅰ)求证:∠P=∠EDF;
(Ⅱ)求证:CE•EB=EF•EP.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知PA与⊙O相切,A为切点,PBC为割线,,弦CD∥AP,AD、BC相交于E点,F为CE上一点,且DE2=EF•EC.
(1)求证:∠P=∠EDF;
(2)求证:CE•EB=EF•EP;
(3)若CE:BE=3:2,DE=6,EF=4,求PA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•甘肃三模)选修4-1:几何证明选讲
如图所示,已知PA与⊙O相切,A为切点,过点P的割线交圆于B、C两点,弦CD∥AP,AD、BC相交于点E,F为CE上一点,且DE2=EF•EC.
(1)求证:CE•EB=EF•EP;
(2)若CE:BE=3:2,DE=3,EF=2,求PA的长.

查看答案和解析>>

同步练习册答案