精英家教网 > 高中数学 > 题目详情
一动圆与圆x2+y2=1外切,而与圆x2+y2-6x+8=0内切,那么动圆的圆心的轨迹是(    )

A.双曲线的一支                              B.椭圆

C.抛物线                                       D.圆

A

解析:设动圆圆心为P(x,y),半径为r,又圆(x-3)2+y2=1的圆心为F(3,0).故?|PO|=r+1,|PF|=r-1,故|PO|-|PF|=2.由双曲线定义知P点轨迹是双曲线的右支.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一动圆与圆x2+y2=1外切,而与圆x2+y2-6x+8=0内切,则动圆圆心的轨迹是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

2、一动圆与圆x2+y2+6x+5=0及圆x2+y2-6x-91=0都内切,则动圆圆心的轨迹是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

一动圆与圆x2+y2+6x+5=0外切,同时与圆x2+y2-6x-91=0内切,则动圆圆心M的轨迹方程是
x2
36
+
y2
27
=1
x2
36
+
y2
27
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,一动圆与圆x2+y2+6x+5=0外切,同时与圆x2+y2-6x-91=0内切,求动圆圆心M的轨迹方程,并说明它是什么样的曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

一动圆与圆x2+y2=1外切,而与圆x2+y2-6x+8=0内切,那么动圆的圆心的轨迹是(    )

A.双曲线的一支             B.椭圆

C.抛物线                      D.圆

查看答案和解析>>

同步练习册答案