精英家教网 > 高中数学 > 题目详情
设△ABC的内角A,B,C所对的边分别为a,b,c,已知a=2,b=3,cosC=
1
3

(Ⅰ)求△ABC的面积;
(Ⅱ)求sin(C-A)的值.
(本小题满分13分)
(Ⅰ)在△ABC中,因为cosC=
1
3

所以sinC=
1-cos2C
=
1-(
1
3
)
2
=
2
2
3
.          …(2分)
所以,S△ABC=
1
2
ab•sinC=
1
2
×2×3×
2
2
3
=2
2
.    …(5分)
(Ⅱ)由余弦定理可得,c2=a2+b2-2ab•cosC=4+9-2×2×3×
1
3
=9
所以,c=3.              …(7分)
又由正弦定理得,
c
sinC
=
a
sinA

所以,sinA=
a•sinC
c
=
2
2
3
3
=
4
2
9
.    …(9分)
因为a<b,所以A为锐角,
所以,cosA=
1-sin2A
=
1-(
4
2
9
)
2
=
7
9
.       …(11分)
所以,sin(C-A)=sinC•cosA-cosC•sinA=
2
2
3
×
7
9
-
1
3
×
4
2
9
=
10
2
27
. …(13分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
3
2
sin2x-cos2-
1
2
,(x∈R).
(Ⅰ)求函数f(x)的最小值和最小正周期;
(Ⅱ)设△ABC的内角A、B、C的对边分别为a、b、c,且c=
3
,f(C)=0,若
m
=(1,sinA)与
n
=(2,sinB)共线,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A、B、C的对边分别为a、b、c.若b=
3
,c=1,B=60°
,则角C=
 
°.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A,B,C的对边分别为a,b,c
(1)求证:acosB+bcosA=c;
(2)若acosB-bcosA=
3
5
c,试求
tanA
tanB
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
2
sin2x-cos2x-
1
2
,x∈R.
(Ⅰ)若x∈[
5
24
π,
3
4
π]
,求函数f(x)的最大值和最小值,并写出相应的x的值;
(Ⅱ)设△ABC的内角A、B、C的对边分别为a、b、c,满足c=
3
,f(C)=0,且sinB=2sinA,求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A、B、C所对的边分别为a,b,c,
(1)若a=1,b=2,cosC=
1
4
,求△ABC的周长;
(2)若直线l:
x
a
+
y
b
=1
恒过点D(1,4),求u=a+b的最小值.

查看答案和解析>>

同步练习册答案